Startseite Zeros of linear combinations of Dirichlet 𝐿-functions on the critical line
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Zeros of linear combinations of Dirichlet 𝐿-functions on the critical line

  • Jérémy Dousselin ORCID logo EMAIL logo
Veröffentlicht/Copyright: 27. Februar 2025

Abstract

Let 𝐹 be a linear combination (of a certain form) of N 1 Dirichlet 𝐿-functions attached to even (or odd) primitive characters. Selberg proved that a positive proportion of non-trivial zeros of 𝐹 lie on the critical line. Our work here is to provide an explicit lower bound for this proportion. In particular, we show that the lower bound 2.16 × 10 6 / ( N log N ) is admissible for large 𝑁.

MSC 2020: 11S40; 11M32; 11M26

Acknowledgements

I would like to thank my PhD advisor Youness Lamzouri for suggesting this problem to me, for his time and guidance, and for several improvement suggestions. Un remerciement à Pascal Ciot pour une aide bibliographique bien utile. A thanks to the anonymous referee for several useful comments and for the time spent meticulously proofreading this article.

  1. Communicated by: Guozhen Lu

References

[1] P. Bauer, Zur Verteilung der Nullstellen der Dirichletschen 𝐿-Reihen, PhD thesis, Johann Wolfgang Goethe-Universität, Frankfurt am Main, 1997. Suche in Google Scholar

[2] P. J. Bauer, Zeros of Dirichlet 𝐿-series on the critical line, Acta Arith. 93 (2000), no. 1, 37–52. 10.4064/aa-93-1-37-52Suche in Google Scholar

[3] H. Bohr and E. Landau, Sur les zéros de la fonction ζ ( s ) de Riemann, Compt. Rend Acad. Sci. (Paris) 158 (1914), 106–110. Suche in Google Scholar

[4] E. Bombieri and D. A. Hejhal, On the distribution of zeros of linear combinations of Euler products, Duke Math. J. 80 (1995), no. 3, 821–862. 10.1215/S0012-7094-95-08028-4Suche in Google Scholar

[5] D. A. Burgess, On character sums and 𝐿-series, Proc. Lond. Math. Soc. (3) 12 (1962), 193–206. 10.1112/plms/s3-12.1.193Suche in Google Scholar

[6] J. B. Conrey and H. Iwaniec, Critical zeros of lacunary 𝐿-functions, Acta Arith. 195 (2020), no. 3, 217–268. 10.4064/aa180813-11-11Suche in Google Scholar

[7] J. B. Conrey, H. Iwaniec and K. Soundararajan, Critical zeros of Dirichlet 𝐿-functions, J. Reine Angew. Math. 681 (2013), 175–198. 10.1515/crelle-2012-0032Suche in Google Scholar

[8] H. Davenport, Multiplicative Number Theory, 2nd ed., Grad. Texts in Math. 74, Springer, New York, 1980. 10.1007/978-1-4757-5927-3Suche in Google Scholar

[9] R. M. Gabriel, Some results concerning the integrals of moduli of regular functions along certain curves, J. Lond. Math. Soc. 2 (1927), no. 2, 112–117. 10.1112/jlms/s1-2.2.112Suche in Google Scholar

[10] G. H. Hardy and J. E. Littlewood, The zeros of Riemann’s zeta-function on the critical line, Math. Z. 10 (1921), no. 3–4, 283–317. 10.1007/BF01211614Suche in Google Scholar

[11] D. R. Heath-Brown, Zeros of the Riemann zeta-function on the critical line, Math. Z. 212 (1993), no. 2, 193–199. 10.1007/BF02571652Suche in Google Scholar

[12] H. Iwaniec and E. Kowalski, Analytic Number Theory, Amer. Math. Soc. Colloq. Publ. 53, American Mathematical Society, Providence, 2004. 10.1090/coll/053Suche in Google Scholar

[13] A. A. Karatsuba, On zeros of the Davenport–Heilbronn function lying on the critical line, Math USSR-Izv. 36 (1991), no. 2, 10.1070/IM1991v036n02ABEH002023. 10.1070/IM1991v036n02ABEH002023Suche in Google Scholar

[14] G. Kolesnik, On the order of Dirichlet 𝐿-functions, Pacific J. Math. 82 (1979), no. 2, 479–484. 10.2140/pjm.1979.82.479Suche in Google Scholar

[15] N. Levinson, At least one-third of zeros of Riemann’s zeta-function are on σ = 1 / 2 , Proc. Natl. Acad. Sci. USA 71 (1974), 383–436. 10.1016/0001-8708(74)90074-7Suche in Google Scholar

[16] K. Matsumoto, The mean square of Dirichlet 𝐿-functions, Proc. Japan Acad. Ser. A Math. Sci. 58 (1982), no. 10, 443–446. 10.3792/pjaa.58.443Suche in Google Scholar

[17] H. L. Montgomery and R. C. Vaughan, Hilbert’s inequality, J. Lond. Math. Soc. (2) 8 (1974), 73–82. 10.1112/jlms/s2-8.1.73Suche in Google Scholar

[18] K. Pratt, N. Robles, A. Zaharescu and D. Zeindler, More than five-twelfths of the zeros of 𝜁 are on the critical line, Res. Math. Sci. 7 (2020), no. 2, Paper No. 2. 10.1007/s40687-019-0199-8Suche in Google Scholar

[19] I. S. Rezvyakova, On the zeros of linear combinations of L-functions of degree two on the critical line: Selberg’s approach, Izv. Math. 80 (2016), no. 3, 602–622. 10.1070/IM8463Suche in Google Scholar

[20] A. Selberg, On the zeros of Riemann’s zeta-function, Skr. Norske Vid.-Akad. Oslo I 1942 (1942), no. 10, 1–59. Suche in Google Scholar

[21] A. Selberg, Zeros on the critical line of linear combinations of Euler products, Talk (1998), http://publications.ias.edu/sites/default/files/DOCuu98.pdf. Suche in Google Scholar

[22] A. Selberg, Linear combinations of 𝐿-functions and zeros on the critical Line, Talk (1999), https://www.msri.org/workshops/101/schedules/25630. Suche in Google Scholar

[23] K. Soundararajan, Moments of the Riemann zeta function, Ann. of Math. (2) 170 (2009), no. 2, 981–993. 10.4007/annals.2009.170.981Suche in Google Scholar

[24] G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Grad. Stud. Math. 163, American Mathematical Society, Providence, 2015. 10.1090/gsm/163Suche in Google Scholar

[25] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed., Oxford University, New York, 1986. Suche in Google Scholar

[26] K.-M. Tsang, The distribution of the values of the Riemann zeta function, Ph.D. Thesis, Princeton University, 1984. Suche in Google Scholar

[27] M. P. Young, A short proof of Levinson’s theorem, Arch. Math. (Basel) 95 (2010), no. 6, 539–548. 10.1007/s00013-010-0199-9Suche in Google Scholar

[28] Y. Zhang and J. Liu, Szu-Hoa Min (1913–1973): A pioneer of analytic number theory in China, ICCM Not. 6 (2018), no. 2, 61–82. 10.4310/ICCM.2018.v6.n2.a8Suche in Google Scholar

Received: 2023-12-11
Revised: 2023-06-08
Published Online: 2025-02-27
Published in Print: 2025-06-01

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2023-0453/html
Button zum nach oben scrollen