Home Mathematics Gabor System based on the unitary dual of the Heisenberg group
Article
Licensed
Unlicensed Requires Authentication

Gabor System based on the unitary dual of the Heisenberg group

  • Santi R. Das and Radha Ramakrishnan EMAIL logo
Published/Copyright: March 25, 2025

Abstract

In this paper, the Gabor system based on the unitary dual of the Heisenberg group H n is introduced and a sufficient condition is obtained for the Gabor system to be a Bessel sequence for L 2 ( R , B 2 ; d κ ) using the Schrödinger representation of H n , where B 2 denotes the class of Hilbert–Schmidt operators on L 2 ( R n ) and d κ denotes the Haar measure on R . Further, a necessary and sufficient condition is provided for the Gabor system to be an orthonormal system, a Parseval frame sequence, a frame sequence and a Riesz sequence.

MSC 2020: 42C15; 43A30; 47A67

Acknowledgements

The authors profusely thank Prof. K. Parthasarathy, RIASM, for his helpful suggestions regarding the explicit calculations for the Fourier transform on R .

  1. Communicated by: Guozhen Lu

References

[1] S. Arati and R. Radha, Frames and Riesz bases for shift invariant spaces on the abstract Heisenberg group, Indag. Math. (N. S.) 30 (2019), no. 1, 106–127. 10.1016/j.indag.2018.09.001Search in Google Scholar

[2] S. Arati and R. Radha, Orthonormality of wavelet system on the Heisenberg group, J. Math. Pures Appl. (9) 131 (2019), 171–192. 10.1016/j.matpur.2019.02.004Search in Google Scholar

[3] S. Arati and R. Radha, Wavelet system and Muckenhoupt A 2 condition on the Heisenberg group, Colloq. Math. 158 (2019), no. 1, 59–76. 10.4064/cm7467-9-2018Search in Google Scholar

[4] D. Barbieri, E. Hernández and V. Paternostro, Spaces invariant under unitary representations of discrete groups, J. Math. Anal. Appl. 492 (2020), no. 1, Article ID 124357. 10.1016/j.jmaa.2020.124357Search in Google Scholar

[5] M. Bownik and K. A. Ross, The structure of translation-invariant spaces on locally compact abelian groups, J. Fourier Anal. Appl. 21 (2015), no. 4, 849–884. 10.1007/s00041-015-9390-5Search in Google Scholar

[6] C. Cabrelli and V. Paternostro, Shift-invariant spaces on LCA groups, J. Funct. Anal. 258 (2010), no. 6, 2034–2059. 10.1016/j.jfa.2009.11.013Search in Google Scholar

[7] O. Christensen, An Introduction to Frames and Riesz Bases, 2nd ed., Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Cham, 2016. 10.1007/978-3-319-25613-9_7Search in Google Scholar

[8] O. Christensen and S. S. Goh, Fourier-like frames on locally compact abelian groups, J. Approx. Theory 192 (2015), 82–101. 10.1016/j.jat.2014.11.002Search in Google Scholar

[9] B. Currey, A. Mayeli and V. Oussa, Characterization of shift-invariant spaces on a class of nilpotent Lie groups with applications, J. Fourier Anal. Appl. 20 (2014), no. 2, 384–400. 10.1007/s00041-013-9316-zSearch in Google Scholar

[10] S. Dahlke, Multiresolution analysis and wavelets on locally compact abelian groups, Wavelets, Images, and Surface Fitting (Chamonix-Mont-Blanc 1993), A K Peters, Wellesley (1994), 141–156. Search in Google Scholar

[11] S. R. Das, R. Velsamy and R. Ramakrishnan, Twisted shift-invariant system in L 2 ( R 2 N ) , Nagoya Math. J. 251 (2023), 734–767. 10.1017/nmj.2023.11Search in Google Scholar

[12] Y. A. Farkov, Orthogonal wavelets with compact supports on locally compact abelian groups, Izv. Ross. Akad. Nauk Ser. Mat. 69 (2005), no. 3, 193–220. 10.4213/im644Search in Google Scholar

[13] G. B. Folland, Harmonic Analysis in Phase Space, Ann. of Math. Stud. 122, Princeton University, Princeton, 1989. 10.1515/9781400882427Search in Google Scholar

[14] G. B. Folland, A Course in Abstract Harmonic Analysis, Stud. Adv. Math., CRC Press, Boca Raton, 1995. Search in Google Scholar

[15] M. Holschneider, Wavelet analysis over abelian groups, Appl. Comput. Harmon. Anal. 2 (1995), no. 1, 52–60. 10.1006/acha.1995.1004Search in Google Scholar

[16] J. W. Iverson, Frames generated by compact group actions, Trans. Amer. Math. Soc. 370 (2018), no. 1, 509–551. 10.1090/tran/6954Search in Google Scholar

[17] M. S. Jakobsen and J. Lemvig, Co-compact Gabor systems on locally compact abelian groups, J. Fourier Anal. Appl. 22 (2016), no. 1, 36–70. 10.1007/s00041-015-9407-0Search in Google Scholar

[18] R. A. Kamyabi Gol and R. R. Tousi, The structure of shift invariant spaces on a locally compact abelian group, J. Math. Anal. Appl. 340 (2008), no. 1, 219–225. 10.1016/j.jmaa.2007.08.039Search in Google Scholar

[19] G. Kutyniok and D. Labate, The theory of reproducing systems on locally compact abelian groups, Colloq. Math. 106 (2006), no. 2, 197–220. 10.4064/cm106-2-3Search in Google Scholar

[20] A. Mayeli, Shannon multiresolution analysis on the Heisenberg group, J. Math. Anal. Appl. 348 (2008), no. 2, 671–684. 10.1016/j.jmaa.2008.07.035Search in Google Scholar

[21] R. Radha and S. Adhikari, Frames and Riesz bases of twisted shift-invariant spaces in L 2 ( R 2 n ) , J. Math. Anal. Appl. 434 (2016), no. 2, 1442–1461. 10.1016/j.jmaa.2015.07.040Search in Google Scholar

[22] R. Radha and S. Adhikari, Shift-invariant spaces with countably many mutually orthogonal generators on the Heisenberg group, Houston J. Math. 46 (2020), no. 2, 435–463. Search in Google Scholar

[23] R. Ramakrishnan and R. Velsamy, Zak transform associated with the Weyl transform and the system of twisted translates on R 2 n , Results Math. 79 (2024), no. 2, Paper No. 65. 10.1007/s00025-023-02088-xSearch in Google Scholar

[24] W. Rudin, Fourier Analysis on Groups, Interscience Tracts Pure Appl. Math. 12, Interscience, New York, 1962. Search in Google Scholar

[25] S. Thangavelu, Harmonic Analysis on the Heisenberg Group, Progr. Math. 159, Birkhäuser, Boston, 1998. 10.1007/978-1-4612-1772-5Search in Google Scholar

Received: 2024-08-12
Published Online: 2025-03-25
Published in Print: 2025-06-01

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/forum-2024-0385/html
Scroll to top button