Startseite Mathematik Oscillatory singular integral operators with Hölder class kernels on Hardy spaces
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Oscillatory singular integral operators with Hölder class kernels on Hardy spaces

  • Yibiao Pan ORCID logo EMAIL logo
Veröffentlicht/Copyright: 16. Dezember 2018

Abstract

A sharp logarithmic bound is established for the H1-norm of oscillatory singular integrals with quadratic phases and Hölder class kernels. Prior results had relied on a C1-assumption on the kernel.

MSC 2010: 42B20; 42B35

Communicated by Christopher D. Sogge


References

[1] H. Al-Qassem, L. Cheng and Y. Pan, Logarithmic bounds for oscillatory singular integrals on Hardy spaces, J. Funct. Spaces 2016 (2016), Article ID 1570109. 10.1155/2016/1570109Suche in Google Scholar

[2] R. Coifman, A real variable characterization of Hp, Studia Math. 51 (1974), 269–274. 10.4064/sm-51-3-269-274Suche in Google Scholar

[3] D. Fan and Y. Pan, Singular integral with rough kernels supported by subvarieties, Amer. J. Math. 119 (1997), 799–839. 10.1353/ajm.1997.0024Suche in Google Scholar

[4] C. Fefferman and E. M. Stein, Hp spaces of several variables, Acta Math. 129 (1972), 137–193. 10.1007/BF02392215Suche in Google Scholar

[5] L. Grafakos, Classical and Modern Fourier Analysis, Pearson Education, Upper Saddle River, 2004. Suche in Google Scholar

[6] Y. Hu and Y. Pan, Boundedness of oscillatory singular integrals on Hardy spaces, Ark. Mat. 30 (1992), 311–320. 10.1007/BF02384877Suche in Google Scholar

[7] D. Phong and E. M. Stein, Hilbert integrals, singular integrals, and Radon transforms. I, Acta. Math. 157 (1986), 99–157. 10.1007/BF02392592Suche in Google Scholar

[8] F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals. I. Oscillatory integrals, J. Funct. Anal. 73 (1987), 179–194. 10.1016/0022-1236(87)90064-4Suche in Google Scholar

[9] P. Sjölin, Convolution with oscillating kernels on Hp spaces, J. Lond. Math. Soc. (2) 23 (1981), 442–454. 10.1112/jlms/s2-23.3.441Suche in Google Scholar

[10] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1970. 10.1515/9781400883882Suche in Google Scholar

[11] E. M. Stein, Oscillatory integrals in fourier analysis, Beijing Lectures in Harmonic Analysis, Ann. of Math. Stud. 112, Princeton University Press, Princeton (1986), 307–335. 10.1515/9781400882090-007Suche in Google Scholar

[12] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, 1993. 10.1515/9781400883929Suche in Google Scholar

Received: 2018-10-15
Published Online: 2018-12-16
Published in Print: 2019-03-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2018-0249/html
Button zum nach oben scrollen