Home Mathematics Sobolev’s inequality for double phase functionals with variable exponents
Article
Licensed
Unlicensed Requires Authentication

Sobolev’s inequality for double phase functionals with variable exponents

  • Fumi-Yuki Maeda , Yoshihiro Mizuta , Takao Ohno EMAIL logo and Tetsu Shimomura
Published/Copyright: November 3, 2018

Abstract

Our aim in this paper is to establish generalizations of Sobolev’s inequality for double phase functionals Φ(x,t)=tp(x)+a(x)tq(x), where p() and q() satisfy log-Hölder conditions and a() is nonnegative, bounded and Hölder continuous of order θ(0,1].

MSC 2010: 46E30; 42B25

Communicated by Frank Duzaar


Acknowledgements

We would like to express our thanks to the referees for their kind comments and helpful suggestions.

References

[1] D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory, Springer, Berlin, 1996. 10.1007/978-3-662-03282-4Search in Google Scholar

[2] Y. Ahmida, I. Chlebicka, P. Gwiazda and A. Youssfi, Gossez’s approximation theorems in Musielak–Orlicz–Sobolev spaces, J. Funct. Anal. 275 (2018), no. 9, 2538–2571. 10.1016/j.jfa.2018.05.015Search in Google Scholar

[3] A. Almeida, J. Hasanov and S. Samko, Maximal and potential operators in variable exponent Morrey spaces, Georgian Math. J. 15 (2008), 195–208. 10.1515/GMJ.2008.195Search in Google Scholar

[4] P. Baroni, M. Colombo and G. Mingione, Non-autonomous functionals, borderline cases and related function classes, St. Petersburg Math. J. 27 (2016), 347–379. 10.1090/spmj/1392Search in Google Scholar

[5] P. Baroni, M. Colombo and G. Mingione, Regularity for general functionals with double phase, Calc. Var. Partial Differential Equations 57 (2018), no. 2, Paper No. 62. 10.1007/s00526-018-1332-zSearch in Google Scholar

[6] C. Capone, D. Cruz-Uribe and A. Fiorenza, The fractional maximal operator and fractional integrals on variable Lp spaces, Rev. Mat. Iberoam. 23 (2007), no. 3, 743–770. 10.4171/RMI/511Search in Google Scholar

[7] M. Colombo and G. Mingione, Bounded minimizers of double phase variational integrals, Arch. Ration. Mech. Anal. 218 (2015), 219–273. 10.1007/s00205-015-0859-9Search in Google Scholar

[8] M. Colombo and G. Mingione, Regularity for double phase variational problems, Arch. Ration. Mech. Anal. 215 (2015), 443–496. 10.1007/s00205-014-0785-2Search in Google Scholar

[9] L. Diening, Riesz potentials and Sobolev embeddings on generalized Lebesgue and Sobolev spaces Lp() and Wk,p(), Math. Nachr. 263 (2004), no. 1, 31–43. 10.1002/mana.200310157Search in Google Scholar

[10] T. Futamura, Y. Mizuta and T. Shimomura, Sobolev embeddings for Riesz potential space of variable exponent, Math. Nachr. 279 (2006), no. 13–14, 1463–1473. 10.1002/mana.200410432Search in Google Scholar

[11] T. Futamura, Y. Mizuta and T. Shimomura, Integrability of maximal functions and Riesz potentials in Orlicz spaces of variable exponent, J. Math. Anal. Appl. 366 (2010), 391–417. 10.1016/j.jmaa.2010.01.053Search in Google Scholar

[12] F. Giannetti and A. Passarelli di Napoli, Regularity results for a new class of functionals with nonstandard growth conditions, J. Differential Equations 254 (2013), 1280–1305. 10.1016/j.jde.2012.10.011Search in Google Scholar

[13] V. S. Guliyev, J. Hasanov and S. Samko, Boundedness of the maximal, potential and singular integral operators in the generalized variable exponent Morrey type spaces, J. Math. Sci. 170 (2010), no. 4, 423–443. 10.1007/s10958-010-0095-7Search in Google Scholar

[14] V. S. Guliyev, J. Hasanov and S. Samko, Boundedness of the maximal, potential and singular operators in the generalized variable exponent Morrey spaces, Math. Scand. 107 (2010), 285–304. 10.7146/math.scand.a-15156Search in Google Scholar

[15] P. Hästö, The maximal operator on generalized Orlicz spaces, J. Funct. Anal. 269 (2015), no. 12, 4038–4048; Corrigendum to “The maximal operator on generalized Orlicz spaces”, J. Funct. Anal. 271 (2016), no. 1, 240–243. 10.1016/j.jfa.2015.10.002Search in Google Scholar

[16] F.-Y. Maeda, Y. Mizuta, T. Ohno and T. Shimomura, Boundedness of maximal operators and Sobolev’s inequality on Musielak–Orlicz–Morrey spaces, Bull. Sci. Math. 137 (2013), 76–96. 10.1016/j.bulsci.2012.03.008Search in Google Scholar

[17] F.-Y. Maeda, T. Ohno and T. Shimomura, Boundedness of maximal operator on Musielak–Orlicz–Morrey spaces, Tohoku Math. J. 69 (2017), 483–495. 10.2748/tmj/1512183626Search in Google Scholar

[18] Y. Mizuta, E. Nakai, T. Ohno and T. Shimomura, Riesz potentials and Sobolev embeddings on Morrey spaces of variable exponent, Complex Var. Elliptic Equ. 56 (2011), no. 7–9, 671–695. 10.1080/17476933.2010.504837Search in Google Scholar

[19] Y. Mizuta, T. Ohno and T. Shimomura, Sobolev’s inequalities and vanishing integrability for Riesz potentials of functions in the generalized Lebesgue space Lp()(logL)q(), J. Math. Anal. Appl. 345 (2008), 70–85. 10.1016/j.jmaa.2008.03.067Search in Google Scholar

[20] Y. Mizuta and T. Shimomura, Sobolev embeddings for Riesz potentials of functions in Morrey spaces of variable exponent, J. Math. Soc. Japan 60 (2008), 583–602. 10.2969/jmsj/06020583Search in Google Scholar

[21] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer, Berlin, 1983. 10.1007/BFb0072210Search in Google Scholar

[22] J. Ok, Gradient estimates for elliptic equations with Lp()logL growth, Calc. Var. Partial Differential Equations 55 (2016), no. 2, Paper No. 26. 10.1007/s00526-016-0965-zSearch in Google Scholar

Received: 2018-04-04
Revised: 2018-09-12
Published Online: 2018-11-03
Published in Print: 2019-03-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/forum-2018-0077/html
Scroll to top button