Home Mathematics K-invariant cusp forms for reductive symmetric spaces of split rank one
Article
Licensed
Unlicensed Requires Authentication

K-invariant cusp forms for reductive symmetric spaces of split rank one

  • Erik P. van den Ban , Job J. Kuit EMAIL logo and Henrik Schlichtkrull
Published/Copyright: October 30, 2018

Abstract

Let G/H be a reductive symmetric space of split rank one and let K be a maximal compact subgroup of G. In a previous article the first two authors introduced a notion of cusp forms for G/H. We show that the space of cusp forms coincides with the closure of the space of K-finite generalized matrix coefficients of discrete series representations if and only if there exist no K-spherical discrete series representations. Moreover, we prove that every K-spherical discrete series representation occurs with multiplicity one in the Plancherel decomposition of G/H.

MSC 2010: 22E30; 22E45

Communicated by Karl-Hermann Neeb


Award Identifier / Grant number: 262362164

Funding statement: The second author was supported by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 262362164.

References

[1] N. B. Andersen and M. Flensted-Jensen, Cuspidal discrete series for projective hyperbolic spaces, Geometric Analysis and Integral Geometry, Contemp. Math. 598, American Mathematical Society, Providence (2013), 59–75. 10.1090/conm/598/11986Search in Google Scholar

[2] N. B. Andersen, M. Flensted-Jensen and H. Schlichtkrull, Cuspidal discrete series for semisimple symmetric spaces, J. Funct. Anal. 263 (2012), no. 8, 2384–2408. 10.1016/j.jfa.2012.07.009Search in Google Scholar

[3] E. P. van den Ban, A convexity theorem for semisimple symmetric spaces, Pacific J. Math. 124 (1986), no. 1, 21–55. 10.2140/pjm.1986.124.21Search in Google Scholar

[4] E. P. van den Ban and J. J. Kuit, Cusp forms for reductive symmetric spaces of split rank one, Represent. Theory 21 (2017), 467–533. 10.1090/ert/507Search in Google Scholar

[5] E. P. van den Ban and J. J. Kuit, Normalizations of Eisenstein integrals for reductive symmetric spaces, J. Funct. Anal. 272 (2017), no. 7, 2795–2864. 10.1016/j.jfa.2017.01.004Search in Google Scholar

[6] E. P. van den Ban and H. Schlichtkrull, Expansions for Eisenstein integrals on semisimple symmetric spaces, Ark. Mat. 35 (1997), no. 1, 59–86. 10.1007/BF02559593Search in Google Scholar

[7] E. P. van den Ban and H. Schlichtkrull, Fourier transform on a semisimple symmetric space, Invent. Math. 130 (1997), no. 3, 517–574. 10.1007/s002220050193Search in Google Scholar

[8] E. P. van den Ban and H. Schlichtkrull, Fourier inversion on a reductive symmetric space, Acta Math. 182 (1999), no. 1, 25–85. 10.1007/BF02392823Search in Google Scholar

[9] E. P. van den Ban and H. Schlichtkrull, The Plancherel decomposition for a reductive symmetric space. I. Spherical functions, Invent. Math. 161 (2005), no. 3, 453–566. 10.1007/s00222-004-0431-ySearch in Google Scholar

[10] F. V. Bien, 𝒟-modules and Spherical Representations, Math. Notes 39, Princeton University Press, Princeton, 1990. 10.1515/9781400862078Search in Google Scholar

[11] M. Flensted-Jensen and J. J. Kuit, Cuspidal integrals for SL(3)/Kϵ, Indag. Math. (N.S.) 29 (2018), no. 5, 1235–1258. 10.1016/j.indag.2018.05.005Search in Google Scholar

[12] Harish-Chandra, Discrete series for semisimple Lie groups. II. Explicit determination of the characters, Acta Math. 116 (1966), 1–111. 10.1007/BF02392813Search in Google Scholar

[13] Harish-Chandra, Harmonic analysis on semisimple Lie groups, Bull. Amer. Math. Soc. 76 (1970), 529–551. 10.1090/S0002-9904-1970-12442-9Search in Google Scholar

[14] Harish-Chandra, Harmonic analysis on real reductive groups. I. The theory of the constant term, J. Funct. Anal. 19 (1975), 104–204. 10.1016/0022-1236(75)90034-8Search in Google Scholar

[15] W. Rossmann, The structure of semisimple symmetric spaces, Canad. J. Math. 31 (1979), no. 1, 157–180. 10.4153/CJM-1979-017-6Search in Google Scholar

[16] V. S. Varadarajan, Harmonic Analysis on Real Reductive Groups, Lecture Notes in Math. 576, Springer, Berlin-New York, 1977. 10.1007/BFb0097814Search in Google Scholar

Received: 2018-06-21
Revised: 2018-08-30
Published Online: 2018-10-30
Published in Print: 2019-03-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/forum-2018-0150/html
Scroll to top button