Startseite Mathematik Nonlinear Dirichlet problems with unilateral growth on the reaction
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Nonlinear Dirichlet problems with unilateral growth on the reaction

  • Nikolaos S. Papageorgiou , Vicenţiu D. Rădulescu EMAIL logo und Dušan D. Repovš ORCID logo
Veröffentlicht/Copyright: 21. Oktober 2018

Abstract

We consider a nonlinear Dirichlet problem driven by the p-Laplace differential operator with a reaction which has a subcritical growth restriction only from above. We prove two multiplicity theorems producing three nontrivial solutions, two of constant sign and the third nodal. The two multiplicity theorems differ on the geometry near the origin. In the semilinear case (that is, p=2), using Morse theory (critical groups), we produce a second nodal solution for a total of four nontrivial solutions. As an illustration, we show that our results incorporate and significantly extend the multiplicity results existing for a class of parametric, coercive Dirichlet problems.

MSC 2010: 35J20; 35J60; 58E05

Communicated by Frank Duzaar


Award Identifier / Grant number: P1-0292

Award Identifier / Grant number: J1-8131

Award Identifier / Grant number: J1-7025

Award Identifier / Grant number: N1-0064

Award Identifier / Grant number: N1-0083

Funding statement: This research was supported by the Slovenian Research Agency grants P1-0292, J1-8131, J1-7025, N1-0064 and N1-0083. V. D. Rădulescu acknowledges the support through the Project MTM2017-85449-P of the DGISPI (Spain).

References

[1] S. Aizicovici, N. S. Papageorgiou and V. Staicu, Degree theory for operators of monotone type and nonlinear elliptic equations with inequality constraints, Mem. Amer. Math. Soc. 196 (2008), no. 915, 1–70. 10.1090/memo/0915Suche in Google Scholar

[2] A. Ambrosetti and D. Lupo, On a class of nonlinear Dirichlet problems with multiple solutions, Nonlinear Anal. 8 (1984), no. 10, 1145–1150. 10.1016/0362-546X(84)90116-0Suche in Google Scholar

[3] A. Ambrosetti and G. Mancini, Sharp nonuniqueness results for some nonlinear problems, Nonlinear Anal. 3 (1979), no. 5, 635–645. 10.1016/0362-546X(79)90092-0Suche in Google Scholar

[4] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349–381. 10.1016/0022-1236(73)90051-7Suche in Google Scholar

[5] D. Arcoya and D. Ruiz, The Ambrosetti–Prodi problem for the p-Laplacian operator, Comm. Partial Differential Equations 31 (2006), no. 4–6, 849–865. 10.1080/03605300500394447Suche in Google Scholar

[6] M. Cuesta, D. de Figueiredo and J.-P. Gossez, The beginning of the Fučik spectrum for the p-Laplacian, J. Differential Equations 159 (1999), no. 1, 212–238. 10.1006/jdeq.1999.3645Suche in Google Scholar

[7] L. Gasinski and N. S. Papageorgiou, Exercises in Analysis: Part I, Springer, New York, 2014. Suche in Google Scholar

[8] M. Filippakis, L. Gasiński and N. S. Papageorgiou, Nonlinear periodic problems with nonsmooth potential restricted in one direction, Publ. Math. Debrecen 68 (2006), no. 1–2, 37–62. 10.5486/PMD.2006.3057Suche in Google Scholar

[9] M. Filippakis, A. Kristály and N. S. Papageorgiou, Existence of five nonzero solutions with exact sign for a p-Laplacian equation, Discrete Contin. Dyn. Syst. 24 (2009), no. 2, 405–440. 10.3934/dcds.2009.24.405Suche in Google Scholar

[10] J. P. García Azorero, I. Peral Alonso and J. J. Manfredi, Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations, Commun. Contemp. Math. 2 (2000), no. 3, 385–404. 10.1142/S0219199700000190Suche in Google Scholar

[11] L. Gasiński and N. S. Papageorgiou, Nonlinear Analysis, Ser. Math. Anal. Appl. 9, Chapman & Hall/CRC, Boca Raton, 2006. Suche in Google Scholar

[12] S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis. Vol. I, Math. Appl. 419, Kluwer Academic, Dordrecht, 1997. 10.1007/978-1-4615-6359-4Suche in Google Scholar

[13] C. Li, S. Li and J. Liu, Splitting theorem, Poincaré–Hopf theorem and jumping nonlinear problems, J. Funct. Anal. 221 (2005), no. 2, 439–455. 10.1016/j.jfa.2004.09.010Suche in Google Scholar

[14] J. Liu and S. Liu, The existence of multiple solutions to quasilinear elliptic equations, Bull. Lond. Math. Soc. 37 (2005), no. 4, 592–600. 10.1112/S0024609304004023Suche in Google Scholar

[15] S. Liu, Multiple solutions for coercive p-Laplacian equations, J. Math. Anal. Appl. 316 (2006), no. 1, 229–236. 10.1016/j.jmaa.2005.04.034Suche in Google Scholar

[16] E. Michael, Continuous selections. I, Ann. of Math. (2) 63 (1956), 361–382. 10.2307/1969615Suche in Google Scholar

[17] E. H. Papageorgiou and N. S. Papageorgiou, A multiplicity theorem for problems with the p-Laplacian, J. Funct. Anal. 244 (2007), no. 1, 63–77. 10.1016/j.jfa.2006.11.015Suche in Google Scholar

[18] N. S. Papageorgiou and S. T. Kyritsi-Yiallourou, Handbook of Applied Analysis, Adv. Mech. Math. 19, Springer, New York, 2009. 10.1007/b120946Suche in Google Scholar

[19] N. S. Papageorgiou, V. D. Rădulescu and D. D. Repovš, Robin problems with a general potential and a superlinear reaction, J. Differential Equations 263 (2017), no. 6, 3244–3290. 10.1016/j.jde.2017.04.032Suche in Google Scholar

[20] N. S. Papageorgiou, V. D. Rădulescu and D. D. Repovš, Positive solutions for superdiffusive mixed problems, Appl. Math. Lett. 77 (2018), 87–93. 10.1016/j.aml.2017.09.017Suche in Google Scholar

[21] M. Struwe, A note on a result of Ambrosetti and Mancini, Ann. Mat. Pura Appl. (4) 131 (1982), 107–115. 10.1007/BF01765148Suche in Google Scholar

[22] M. Struwe, Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer, Berlin, 1990. Suche in Google Scholar

[23] S. Villegas, A Neumann problem with asymmetric nonlinearity and a related minimizing problem, J. Differential Equations 145 (1998), no. 1, 145–155. 10.1006/jdeq.1997.3396Suche in Google Scholar

Received: 2018-05-11
Published Online: 2018-10-21
Published in Print: 2019-03-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2018-0114/html
Button zum nach oben scrollen