Startseite The role of the Rogers–Shephard inequality in the characterization of the difference body
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The role of the Rogers–Shephard inequality in the characterization of the difference body

  • Judit Abardia-Evéquoz und Eugenia Saorín Gómez EMAIL logo
Veröffentlicht/Copyright: 2. Dezember 2016

Abstract

The Rogers–Shephard and Brunn–Minkowski inequalities provide upper and lower bounds for the volume of the difference body in terms of the volume of the body itself. In this work it is shown that the difference body operator is the only continuous and GL(n)-covariant operator from the space of convex bodies to the origin-symmetric ones which satisfies a Rogers–Shephard-type inequality. This is a consequence of a more general classification result for operators on convex bodies of the type aK+b(-K).

MSC 2010: 52A20; 52B45; 52A40

Communicated by Karl Strambach


Award Identifier / Grant number: AB 584/1-1

Award Identifier / Grant number: AB 584/1-2

Award Identifier / Grant number: MTM2012-34037

Funding source: Fundación Séneca

Award Identifier / Grant number: 19901/GERM/15

Funding statement: The first author is supported by grants AB 584/1-1 and AB 584/1-2 of the Deutsche Forschungsgemeinschaft (DFG). The second author is partially supported by the project MTM2012-34037 of the Ministerio de Economía y Competitividad (MINECO/FEDER), and by the project 19901/GERM/15 of the Fundación Séneca, http://dx.doi.org/10.13039/100007801.

Acknowledgements

The authors would like to thank the referees for their careful review of the manuscript. We do highly appreciate the constructive comments and the suggestions which have undoubtedly helped to improve this work.

References

[1] J. Abardia, Difference bodies in complex vector spaces, J. Funct. Anal. 263 (2012), no. 11, 3588–3603. 10.1016/j.jfa.2012.09.002Suche in Google Scholar

[2] S. Artstein-Avidan, K. Einhorn, D. I. Florentin and Y. Ostrover, On Godbersen’s conjecture, Geom. Dedicata 178 (2015), 337–350. 10.1007/s10711-015-0060-1Suche in Google Scholar

[3] G. Bianchi, R. J. Gardner and P. Gronchi, Symmetrization in geometry, Adv. Math. 306 (2017), 51–88. 10.1016/j.aim.2016.10.003Suche in Google Scholar

[4] G. D. Chakerian, Inequalities for the difference body of a convex body, Proc. Amer. Math. Soc. 18 (1967), 879–884. 10.1090/S0002-9939-1967-0218972-8Suche in Google Scholar

[5] R. J. Gardner, Geometric Tomography, 2nd ed., Encyclopedia Math. Appl. 58, Cambridge University Press, New York, 2006. 10.1017/CBO9781107341029Suche in Google Scholar

[6] R. J. Gardner, D. Hug and W. Weil, Operations between sets in geometry, J. Eur. Math. Soc. (JEMS) 15 (2013), 2297–2352. 10.4171/JEMS/422Suche in Google Scholar

[7] R. J. Gardner, D. Hug and W. Weil, The Orlicz–Brunn–Minkowski theory: A general framework, additions, and inequalities, J. Differential Geom. 97 (2014), no. 3, 427–476. 10.4310/jdg/1406033976Suche in Google Scholar

[8] C. Godbersen, Der Satz vom Vektorbereich in Räumen beliebiger Dimensionen, Dissertation, Universität Göttingen, Göttingen, 1938. Suche in Google Scholar

[9] M. Ludwig, Projection bodies and valuations, Adv. Math. 172 (2002), no. 2, 158–168. 10.1016/S0001-8708(02)00021-XSuche in Google Scholar

[10] M. Ludwig, Minkowski valuations, Trans. Amer. Math. Soc. 357 (2005), no. 10, 4191–4213. 10.1090/S0002-9947-04-03666-9Suche in Google Scholar

[11] E. Makai, Jr., Research problem, Period. Math. Hungar. 5 (1974), 353–354. 10.1007/BF02018191Suche in Google Scholar

[12] T. Mesikepp, M-addition, J. Math. Anal. Appl. 443 (2016), 146–177. 10.1016/j.jmaa.2016.05.011Suche in Google Scholar

[13] V. Milman and L. Rotem, Characterizing addition of convex sets by polynomiality of volume and by the homothety operation, Commun. Contemp. Math. 17 (2015), no. 3, Article ID 1450022. 10.1142/S0219199714500229Suche in Google Scholar

[14] C. A. Rogers and G. C. Shephard, The difference body of a convex body, Arch. Math. 8 (1957), 220–233. 10.1007/BF01899997Suche in Google Scholar

[15] C. A. Rogers and G. C. Shephard, Convex bodies associated with a given convex body, J. Lond. Math. Soc. 33 (1958), 270–281. 10.1112/jlms/s1-33.3.270Suche in Google Scholar

[16] R. Schneider, Equivariant endomorphisms of the space of convex bodies, Trans. Amer. Math. Soc. 194 (1974), 53–78. 10.1090/S0002-9947-1974-0353147-1Suche in Google Scholar

[17] R. Schneider, Convex Bodies: The Brunn–Minkowski Theory, 2nd, expanded ed., Encyclopedia Math. Appl. 151, Cambridge University Press, Cambridge, 2014. Suche in Google Scholar

[18] T. Wannerer, GL(n) equivariant Minkowski valuations, Indiana Univ. Math. J. 60 (2011), no. 5, 1655–1672. 10.1512/iumj.2011.60.4425Suche in Google Scholar

Received: 2016-4-26
Revised: 2016-10-10
Published Online: 2016-12-2
Published in Print: 2017-11-1

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 20.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2016-0101/html
Button zum nach oben scrollen