Startseite Time-fractional diffusion with mass absorption under harmonic impact
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Time-fractional diffusion with mass absorption under harmonic impact

  • Yuriy Povstenko EMAIL logo und Tamara Kyrylych
Veröffentlicht/Copyright: 13. März 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Time-fractional diffusion equation with mass absorption and the harmonic source term is studied under zero initial conditions. The Caputo derivative of the order 0 < α ≤ 2 is used. Different formulation of the problem for integer values α = 1 and α = 2 are discussed. The integral transform technique is used. The results of numerical calculations are illustrated graphically.

References

[1] E. Abad, S.B. Yuste, K. Lindenberg, Survival probability of an immobile target in a sea of evanescent diffusive or subdiffusive traps: A fractional equation approach. Phys. Rev. E86 (2012), # 061120.10.1103/PhysRevE.86.061120Suche in Google Scholar PubMed

[2] M. Abramowitz, I.A. Stegun (Eds.), Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover, New York (1972).Suche in Google Scholar

[3] E. Abuteen, A. Freihat, M. Al-Smadi, H. Khalil, R.A. Khan, Approximate series solution of nonlinear, fractional Klein-Gordon equations using fractional reduced differential transform method. J. Math. Stat. 12, No 1 (2016), 23–33.10.3844/jmssp.2016.23.33Suche in Google Scholar

[4] H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, 2nd Ed. Oxford University Press, Oxford (1959).Suche in Google Scholar

[5] J. Crank, The Mathematics of Diffusion, 2nd ed. Clarendon Press, Oxford (1975).Suche in Google Scholar

[6] R.S. Damor, S. Kumar, A.K. Shukla, Solution of fractional bioheat equation in terms of Fox’s H-Function. SpringerPlus5 (2016), # 111, 1–10; 10.1186/s40064-016-1743-2.Suche in Google Scholar PubMed PubMed Central

[7] A. Erdélyi, W. Magnus, F. Oberhettinger, F. Tricomi, Tables of Integral Transforms, Vol. 1. McGraw-Hill, New York (1954).Suche in Google Scholar

[8] L.L. Ferrás, N.J. Ford, M.L. Morgado, J.M. Nóbrega, M.S. Rebelo, Fractional Pennes’ bioheat equation: theoretical and numerical studies. Fract. Calc. Appl. Anal. 18, No 4 (2015), 1080–1106; 10.1515/fca-2015-0062;https://www.degruyter.com/view/j/fca.2015.18.issue-4/issue-files/fca.2015.18.issue-4.xml.Suche in Google Scholar

[9] F. Gabbiani, S.J. Cox, Mathematics for Neuroscientists, 2nd Ed. Academic Press, Amsterdam (2017).Suche in Google Scholar

[10] V.V. Gafiychuk, I.A. Lubashevsky, Mathematical Description of HeatTransfer in Living Tissue. VNTL Publishers, Lviv (1999).Suche in Google Scholar

[11] A.K. Golmankhaneh, A.K. Golmankhaneh, D. Baleanu, On nolinear fractional Klein-Gordon equation. Signal Process. 91, No 3 (2011), 446– 451.10.1016/j.sigpro.2010.04.016Suche in Google Scholar

[12] R. Gorenflo, F. Mainardi, Fractional calculus: Integral and differential equations of fractional order. In: Fractals and Fractional Calculus inContinuum Mechanics, Springer, Wien (1997), 223–276.10.1007/978-3-7091-2664-6_5Suche in Google Scholar

[13] A.E. Green, P.M. Naghdi, Thermoelasticity without energy dissipation. J. Elast. 31, No 3 (1993), 189–208.10.1007/BF00044969Suche in Google Scholar

[14] H. Kheiri, S. Shahi, A. Mojaver, Analytical solutions for the fractional Klein-Gordon equation. Comput. Meth. Diff. Equat. 2, No 2 (2014), 99–114.Suche in Google Scholar

[15] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applicationsof Fractional Differential Equations. Elsevier, Amsterdam (2006).Suche in Google Scholar

[16] S.M. Korogod, S. Tyč-Dumont, Electrical Dynamics of the DendriticSpace. Cambridge University Press, Cambridge (2009).10.1017/CBO9780511691584Suche in Google Scholar

[17] A. Lakhssassi, E. Kengne, H. Semmaoui, Modified Pennes’ equation modelling bio-heat transfer in living tissues: analytical and numerical analysis. Nat. Sci. 2, No 12 (2010), 1375–1385.Suche in Google Scholar

[18] F. Mainardi, The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett. 9, No 6 (1996), 23–28.10.1016/0893-9659(96)00089-4Suche in Google Scholar

[19] F. Mainardi, Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos, Solitons Fractals7, No 9 (1996), 1461–1477.10.1016/0960-0779(95)00125-5Suche in Google Scholar

[20] R.R. Nigmatullin, To the theoretical explanation of the “universal response”. Phys. Stat. Sol. (b)123, No 2 (1984), 739–745.10.1515/9783112495506-040Suche in Google Scholar

[21] W. Nowacki, State of stress in an elastic space due to a source of heat varying harmonically as function of time. Bull. Acad. Polon. Sci. Sér. Sci. Techn. 5 (1957), 145–154.Suche in Google Scholar

[22] H.H. Pennes, Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol. 1, No 2 (1948), 93–122.10.1152/jappl.1948.1.2.93Suche in Google Scholar PubMed

[23] I. Podlubny, Fractional differential Equations. Academic Press, San Diego (1999).Suche in Google Scholar

[24] A.D. Polyanin, Handbook of Linear Partial Differential Equations for Engineers and Scientists. Chapman & Hall/CRC, Boca Raton (2002).10.1201/9781420035322Suche in Google Scholar

[25] Y. Povstenko, Fractional heat conduction equation and associated thermal stresses. J. Thermal Stresses28, No 1 (2005), 83–102.10.1080/014957390523741Suche in Google Scholar

[26] Y. Povstenko, Non-axisymmetric solutions to time-fractional diffusion-wave equation in an infinite cylinder. Fract. Calc. Appl. Anal. 14, No 3 (2011), 418–435; 10.2478/s13540-011-0026-4.Suche in Google Scholar

[27] Y. Povstenko, Fractional Thermoelasticity. Springer, New York (2015).10.1007/978-3-319-15335-3Suche in Google Scholar

[28] Y. Povstenko, Linear Fractional Diffusion-Wave Equation for Scientists and Engineers. Birkhäuser, New York (2015).10.1007/978-3-319-17954-4Suche in Google Scholar

[29] Y. Povstenko, Fractional heat conduction in a space with a source varying harmonically in time and associated thermal stresses. J. Thermal Stresses39, No 11 (2016), 1442–1450.10.1080/01495739.2016.1209991Suche in Google Scholar

[30] A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, Integrals and Series, Vol 1: Elementary Functions, Gordon and Breach Science Publishers, Amsterdam (1986).Suche in Google Scholar

[31] Y. Qin, K. Wu, Numerical solution of fractional bioheat equation by quadratic spline collocation method. J. Nonlinear Sci. Appl. 9, No 7 (2016), 5061–5072.10.22436/jnsa.009.07.09Suche in Google Scholar

[32] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives, Theory and Applications. Gordon and Breach, Amsterdam (1993).Suche in Google Scholar

[33] J. Tenreiro Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simulat. 16, No 3 (2011), 1140–1153.10.1016/j.cnsns.2010.05.027Suche in Google Scholar

[34] S. Vitali, G. Castellani, F. Mainardi, Time fractional cable equation and applications in neurophysiology. Chaos, Solitons Fractals102 (2017) 467–472.10.1016/j.chaos.2017.04.043Suche in Google Scholar

[35] A.-M. Wazwaz, Partial Differential Equations and Solitary Waves Theory. Higher Education Press, Beijing; Springer, Berlin (2009).10.1007/978-3-642-00251-9Suche in Google Scholar

Appendix A

The inverse Laplace transforms (A.1)(A.4) are taken from [7], and Eqs. (A.5)(A.6) from [23]:

L11s+ps+q=eqteptpq.(A.1)
L11s2+p2s+q=1p2+q2eqtcospt+qpsinpt.(A.2)
L1expqs2+p2s2+p2=J0pt2q2,t>q>0,0,q>t>0,(A.3)

where J0(r) is the Bessel function of the first kind.

L1expqs2p2s2p2=I0pt2q2,t>q>0,0,q>t>0.(A.4)

Here I0(r) is the modified Bessel function of the first kind.

L1sμνsμ+p=tν1Eμ,νptμ,(A.5)

where Eμ, ν(z) is the Mittag-Leffler function in two parameters μ and ν:

Eμ,νz=k=0zkΓμk+ν,μ>0,ν>0,zC.(A.6)

Appendix B

The following integrals are taken from [7] and [30]:

01x2+p2cosqxdx=π2pepq,Rep>0,q>0.(B.1)
01x2p2cosqxdx=π2psinpq,p>0,q>0.(B.2)

The integral (B.2) is understood in the sense of Cauchy principal value.

0ea2x2x2+p2cosqxdx=π4pea2p2[epqerfcapq2a+epqerfcap+q2a],Rea>0,Rep>0,q>0,(B.3)

where erfc (z) is the complementary error function.

0epx2cosqxdx=π2pexpq24p,Rep>0,q>0.(B.4)
0cosax2+y2x2+p2cosqxdx=π2pepqcosay2p2,p>0,y>0,q>a>0.(B.5)
0sinax2+y2x2+p2x2+y2cosqxdx=π2pepqsinay2p2y2p2,p>0,y>0,q>a>0.(B.6)
Received: 2017-10-7
Published Online: 2018-3-13
Published in Print: 2018-2-23

© 2018 Diogenes Co., Sofia

Artikel in diesem Heft

  1. Frontmatter
  2. Editorial Note
  3. FCAA related news, events and books (FCAA–volume 21–1–2018)
  4. Survey Paper
  5. From continuous time random walks to the generalized diffusion equation
  6. Survey Paper
  7. Properties of the Caputo-Fabrizio fractional derivative and its distributional settings
  8. Research Paper
  9. Exact and numerical solutions of the fractional Sturm–Liouville problem
  10. Research Paper
  11. Some stability properties related to initial time difference for Caputo fractional differential equations
  12. Research Paper
  13. On an eigenvalue problem involving the fractional (s, p)-Laplacian
  14. Research Paper
  15. Diffusion entropy method for ultraslow diffusion using inverse Mittag-Leffler function
  16. Research Paper
  17. Time-fractional diffusion with mass absorption under harmonic impact
  18. Research Paper
  19. Optimal control of linear systems with fractional derivatives
  20. Research Paper
  21. Time-space fractional derivative models for CO2 transport in heterogeneous media
  22. Research Paper
  23. Improvements in a method for solving fractional integral equations with some links with fractional differential equations
  24. Research Paper
  25. On some fractional differential inclusions with random parameters
  26. Research Paper
  27. Initial boundary value problems for a fractional differential equation with hyper-Bessel operator
  28. Research Paper
  29. Mittag-Leffler function and fractional differential equations
  30. Research Paper
  31. Complex spatio-temporal solutions in fractional reaction-diffusion systems near a bifurcation point
  32. Research Paper
  33. Differential and integral relations in the class of multi-index Mittag-Leffler functions
Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/fca-2018-0008/pdf
Button zum nach oben scrollen