Abstract
In this paper we analyze an eigenvalue problem involving the fractional (s, p)-Laplacian, which possesses on the one hand a continuous family of eigenvalues and, on the other hand, one more eigenvalue, which is isolated in the set of eigenvalues of the problem.
Acknowledgements
This research was partially supported by CNCS-UEFISCDI Grant No. PN-III-P4-ID-PCE-2016-0035.
References
[1] D. Averna, S. Tersian, E. Tornator, On the existence and multiplicity of solutions for Dirichlet’s problem for fractional diferential equations. Fract. Calc. Appl. Anal. 19, No 1 (2016), 253-266; 10.1515/fca-2016-0014;https://www.degruyter.com/view/j/fca.2016.19.issue-1/issue-files/fca.2016.19.issue-1.xml.Suche in Google Scholar
[2] J. Bertoin, Levy Processes. Cambridge Univ. Press, Cambridge (1996).Suche in Google Scholar
[3] L. Brasco, E. Parini, M. Squassina, Stability of variational eigenvalues for the fractional p-Laplacian. Discrete and Continuous Dynamical Systems36, No 4 (2016), 1813–1845.10.3934/dcds.2016.36.1813Suche in Google Scholar
[4] L. Caffarelli, Nonlocal equations, drifts and games. In: Nonlinear Partial Differential Equations, Springer, Berlin (2012), 37–52.10.1007/978-3-642-25361-4_3Suche in Google Scholar
[5] L. Del Pezzo, J. Fernandez Bonder, L. Lopez Rios, An optimization problem for the first eigenvalue of the p-fractional Laplacian. Math. Nachr., In Press (Preprint arXiv:1601.03019v1).10.1002/mana.201600110Suche in Google Scholar
[6] L. Del Pezzo, A. Quaas, Global bifurcation for fractional p-Laplacian and application. Z. Anal. Anwend. 35, No 4 (2016), 411–447.10.4171/ZAA/1572Suche in Google Scholar
[7] L. Del Pezzo, J.D. Rossi, Eigenvalues for a nonlocal pseudo p-Laplacian. Discrete and Contin. Dynam. Systems36, No 12 (2016), 6737–6765.10.3934/dcds.2016093Suche in Google Scholar
[8] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, No 5 (2012), 521–573.10.1016/j.bulsci.2011.12.004Suche in Google Scholar
[9] M. Fărcăşeanu, M. Mihăilescu, D. Stancu-Dumitru, Perturbed fractional eigenvalue problems. Discrete and Contin. Dynam. Systems - A37, No 12 (2017), 6243–6255.10.3934/dcds.2017270Suche in Google Scholar
[10] G. Franzina, G. Palatucci, Fractional p-eigenvalues. Riv. Mat. Univ. Parma5, No 2 (2014), 315–328.Suche in Google Scholar
[11] G. Gilboa, S. Osher, Nonlocal operators with applications to image processing. Multiscale. Model. Simul. 7, No 3 (2008), 1005–1028.10.1137/070698592Suche in Google Scholar
[12] P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985).Suche in Google Scholar
[13] N. Laskin, Fractional quantum mechanics and Levy path integrals. Phys. Lett. A268, No 4-6 (2000), 298–305.10.1016/S0375-9601(00)00201-2Suche in Google Scholar
[14] E. Lindgren, P. Lindqvist, Fractional eigenvalues. Calc. Var. 49, No 1-2 (2014), 795–826.10.1007/s00526-013-0600-1Suche in Google Scholar
[15] M. Mihăilescu, V. Rădulescu, Sublinear eigenvalue problems associated to the Laplace operator revisited. Israel J. of Math. 181, No 1 (2011), 317–326.10.1007/s11856-011-0011-ySuche in Google Scholar
[16] P. Pucci, V. Rădulescu, Remarks on a polyharmonic eigenvalue problem. C. R. Acad. Sci. Paris348, No 3-4 (2010), 161–164.10.1016/j.crma.2010.01.013Suche in Google Scholar
[17] M. Struwe, Variational Methods: Applications to Nonlinear PartialDifferential Equations and Hamiltonian Systems. Springer, Heidelberg (1996).10.1007/978-3-662-03212-1Suche in Google Scholar
[18] Q. M. Zhou, K. Q. Wang, Existence and multiplicity of solutions for nonlinear elliptic problems with the fractional Laplacian. Fract. Calc. Appl. Anal. 18, No 1 (2015), 133-145; 10.1515/fca-2015-0009;https://www.degruyter.com/view/j/fca.2015.18.issue-1/issue-files/fca.2015.18.issue-1.xml.Suche in Google Scholar
© 2018 Diogenes Co., Sofia
Artikel in diesem Heft
- Frontmatter
- Editorial Note
- FCAA related news, events and books (FCAA–volume 21–1–2018)
- Survey Paper
- From continuous time random walks to the generalized diffusion equation
- Survey Paper
- Properties of the Caputo-Fabrizio fractional derivative and its distributional settings
- Research Paper
- Exact and numerical solutions of the fractional Sturm–Liouville problem
- Research Paper
- Some stability properties related to initial time difference for Caputo fractional differential equations
- Research Paper
- On an eigenvalue problem involving the fractional (s, p)-Laplacian
- Research Paper
- Diffusion entropy method for ultraslow diffusion using inverse Mittag-Leffler function
- Research Paper
- Time-fractional diffusion with mass absorption under harmonic impact
- Research Paper
- Optimal control of linear systems with fractional derivatives
- Research Paper
- Time-space fractional derivative models for CO2 transport in heterogeneous media
- Research Paper
- Improvements in a method for solving fractional integral equations with some links with fractional differential equations
- Research Paper
- On some fractional differential inclusions with random parameters
- Research Paper
- Initial boundary value problems for a fractional differential equation with hyper-Bessel operator
- Research Paper
- Mittag-Leffler function and fractional differential equations
- Research Paper
- Complex spatio-temporal solutions in fractional reaction-diffusion systems near a bifurcation point
- Research Paper
- Differential and integral relations in the class of multi-index Mittag-Leffler functions
Artikel in diesem Heft
- Frontmatter
- Editorial Note
- FCAA related news, events and books (FCAA–volume 21–1–2018)
- Survey Paper
- From continuous time random walks to the generalized diffusion equation
- Survey Paper
- Properties of the Caputo-Fabrizio fractional derivative and its distributional settings
- Research Paper
- Exact and numerical solutions of the fractional Sturm–Liouville problem
- Research Paper
- Some stability properties related to initial time difference for Caputo fractional differential equations
- Research Paper
- On an eigenvalue problem involving the fractional (s, p)-Laplacian
- Research Paper
- Diffusion entropy method for ultraslow diffusion using inverse Mittag-Leffler function
- Research Paper
- Time-fractional diffusion with mass absorption under harmonic impact
- Research Paper
- Optimal control of linear systems with fractional derivatives
- Research Paper
- Time-space fractional derivative models for CO2 transport in heterogeneous media
- Research Paper
- Improvements in a method for solving fractional integral equations with some links with fractional differential equations
- Research Paper
- On some fractional differential inclusions with random parameters
- Research Paper
- Initial boundary value problems for a fractional differential equation with hyper-Bessel operator
- Research Paper
- Mittag-Leffler function and fractional differential equations
- Research Paper
- Complex spatio-temporal solutions in fractional reaction-diffusion systems near a bifurcation point
- Research Paper
- Differential and integral relations in the class of multi-index Mittag-Leffler functions