Startseite Diffusion entropy method for ultraslow diffusion using inverse Mittag-Leffler function
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Diffusion entropy method for ultraslow diffusion using inverse Mittag-Leffler function

  • Yingjie Liang EMAIL logo
Veröffentlicht/Copyright: 13. März 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This study analyzes the complexity of ultraslow diffusion process using both the classical Shannon entropy and its general case with inverse Mittag-Leffler function in conjunction with the structural derivative. To further describe the observation process with information loss in ultraslow diffusion, e.g., some defects in the observation process, two definitions of fractional entropy are proposed by using the inverse Mittag-Leffler function, in which the Pade approximation technique is employed to numerically estimate the diffusion entropy. The results reveal that the inverse Mittag-Leffler tail in the propagator of the ultraslow diffusion equation model adds more information to the original distribution with larger entropy. Smaller value of α in the inverse Mittag-Leffler function indicates more complicated of the underlying ultraslow diffusion and corresponds to higher value of entropy. The proposed definitions of fractional entropy can serve as candidates to capture the information loss in ultraslow diffusion.

MSC 2010: 33E12; 34A08; 94A17; 97K60

Acknowledgements

The work described in this paper was supported by the Fundamental Research Funds for the Central Universities No. 2017B01114, the National Natural Science Foundation of China No. 11702085.

References

[1] N.V. Brilliantov, T. Poschel, Kinetic Theory of Granular Gases. Oxford University Press, Oxford, 2004.10.1093/acprof:oso/9780198530381.001.0001Suche in Google Scholar

[2] W. Chen, Non-power-function metric: a generalized fractal. Math. Phys. (2017); Preprint at viXra:1612.0409; http://vixra.org/pdf/1612.0409v1.pdf.Suche in Google Scholar

[3] W. Chen, Time-space fabric underlying anomalous diffusion. Chaos Soliton Fract. 28 (2006) 923–929.10.1016/j.chaos.2005.08.199Suche in Google Scholar

[4] W. Chen, Y. Liang, X. Hei, Structural derivative based on inverse Mittag-Leffler function for modeling ultraslow diffusion. Fract. Calc. Appl. Anal. 19, No 5 (2016), 1250–1261; 10.1515/fca-2016-0064; https://www.degruyter.com/view/j/fca.2016.19.issue-5/issue-files/fca.2016.19.issue-5.xmlSuche in Google Scholar

[5] S.I. Denisov, Y.S. Bystrik, H. Kantz, Limiting distributions of continuous-time random walks with super heavy-tailed waiting times. Phys. Rev. E 87 (2013), Art. # 022117.Suche in Google Scholar

[6] S.I. Denisov, H. Kantz, Continuous-time random walk with a super heavy-tailed distribution of waiting times. Phys. Rev. E 83 (2011), Art. # 041132.Suche in Google Scholar

[7] S.I. Denisov, S.B. Yuste, Y.S. Bystrik, et al., Asymptotic solutions of decoupled continuous-time random walks with super heavy-tailed waiting time and heavy-tailed jump length distributions. Phys. Rev. E 84 (2011), Art. # 061143.Suche in Google Scholar

[8] J. Drager, J. Klafter, Strong anomaly in diffusion generated by iterated maps. Phys. Rev. Lett. 84 (2000), 5998–6001.10.1103/PhysRevLett.84.5998Suche in Google Scholar PubMed

[9] C. Dumouchel, S. Grout, Application of the scale entropy diffusion model to describe a liquid atomization process. Int. J. Multiphase Flow 35 (2009), 952–962.10.1016/j.ijmultiphaseflow.2009.05.002Suche in Google Scholar

[10] I. Eliazar, J. Klafter, On the generation of anomalous and ultraslow diffusion. J. Phys-Math. Theor. 44 (2011), 2033–2039.10.1088/1751-8113/44/40/405006Suche in Google Scholar

[11] R. Gorenflo, J. Loutchko, Y. Luchko, Computation of the Mittag-Leffler function and its derivatives. Fract. Calc. Appl. Anal. 5, No 1 (2002), 12–15.Suche in Google Scholar

[12] R. Hilfer, H.J. Seybold, Computation of the generalized Mittag-Leffler function and its inverse in the complex plane. Integr. Transf. Spec. F. 17 (2006), 637–652.10.1080/10652460600725341Suche in Google Scholar

[13] C. Ingo, T.R. Barrick, A.G. Webb, et al., Accurate Pade global approximations for the Mittag-Leffler function, its inverse, and its partial derivatives to efficiently compute convergent power series. Int. J. Appl. Comput. Mat. 3 (2017), 347–362.10.1007/s40819-016-0158-7Suche in Google Scholar

[14] G. Jumarie, Derivation of an amplitude of information in the setting of a new family of fractional entropies. Inform. Sciences 216 (2012), 113–137.10.1016/j.ins.2012.06.008Suche in Google Scholar

[15] G. Jumarie, Path probability of random fractional systems defined by white noises in coarse-grained time: Application of fractional entropy. Fract. Differ. Calc. 1, No 1 (2011), 45–87.10.7153/fdc-01-03Suche in Google Scholar

[16] A.N. Kochubei, Distributed order calculus and equations of ultraslow diffusion. J. Math. Anal. Appl. 340 (2008), 252–281.10.1016/j.jmaa.2007.08.024Suche in Google Scholar

[17] Y. Liang, W. Chen, A non-local structural derivative model for characterization of ultraslow diffusion in dense colloids. Commun. Nonlinear Sci. 56 (2018), 131–137.10.1016/j.cnsns.2017.07.027Suche in Google Scholar

[18] Y. Liang, W. Chen, B.S. Akpa, et al., Using spectral and cumulative spectral entropy to classify anomalous diffusion in Sephadex gels. Comput. Math. Appl. 73 (2017), 765–774.10.1016/j.camwa.2016.12.028Suche in Google Scholar

[19] Y. Luchko, Entropy production rate of a one-dimensional alpha-fractional diffusion process. Axioms 5 (2016), 1–11.10.3390/axioms5010006Suche in Google Scholar

[20] R.L. Magin, C. Ingo, L. Colon-Perez, et al., Characterization of anomalous diffusion in porous biological tissues using fractional order derivatives and entropy. Micropor. Mesopor. Mat. 178 (2013), 39–43.10.1016/j.micromeso.2013.02.054Suche in Google Scholar

[21] S. Marano, M. Franceschetti, Ray propagation in a random lattice: a maximum entropy, anomalous diffusion Process. IEEE T. Antenn. Propag. 53 (2005), 1888–1896.10.1109/TAP.2005.848475Suche in Google Scholar

[22] D.C. Mays, B. Faybishenko, S. Finsterle, Information entropy to measure temporal and spatial complexity of unsaturated flow in heterogeneous media. Water Resour. Res. 38 (2002), Art. # 1313.10.1029/2001WR001185Suche in Google Scholar

[23] M.M. Meerschaert, E. Nane, P. Vellaisamy, Distributed-order fractional diffusions on bounded domains. J. Math. Anal. Appl. 379 (2011), 216–228.10.1016/j.jmaa.2010.12.056Suche in Google Scholar

[24] R. Metzler, J. Klafter, The random walk¡¯s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339 (2000), 1–77.10.1016/S0370-1573(00)00070-3Suche in Google Scholar

[25] J. Prehl, C. Essex, K.H. Hoffmann, Tsallis relative entropy and anomalous diffusion. Entropy 4 (2012), 701–716.10.3390/e14040701Suche in Google Scholar

[26] L.P. Sanders, M.A. Lomholt, L. Lizana, et al., Severe slowing-down and universality of the dynamics in disordered interacting many-body systems: ageing and ultraslow diffusion. New J. Phys. 16 (2014), Art. # 113050.10.1088/1367-2630/16/11/113050Suche in Google Scholar

[27] N. Scafetta, P. Grigolini, Scaling detection in time series: diffusion entropy analysis. Phys. Rev. E 66 (2002), Art. # 036130.10.1103/PhysRevE.66.036130Suche in Google Scholar PubMed

[28] Y.G. Sinai, The limiting behavior of a one-dimensional random walk in a random medium. Theor. Probab. Appl. 27 (1983), 256–268.10.1007/978-1-4419-6205-8_2Suche in Google Scholar

[29] I.M. Sokolov, A.V. Chechkin, J. Klafter, Distributed-order fractional kinetics. Acta Phys. Pol. B 35 (2004), 1323–1341.Suche in Google Scholar

[30] M. Sperl, Nearly logarithmic decay in the colloidal hard-sphere system. Phys. Rev. E 71 (2005), Art. # 060401.10.1103/PhysRevE.71.060401Suche in Google Scholar PubMed

[31] A. Vaknin, Z. Ovadyahu, M. Pollak, Aging effects in an Anderson insulator. Phys. Rev. Lett. 84 (2000), Art. # 3402.10.1103/PhysRevLett.84.3402Suche in Google Scholar PubMed

[32] W. Xu, F. Wu, Y. Jiao, el al., A general micromechanical framework of effective moduli for the design of nonspherical nano- and micro-particle reinforced composites with interface properties. Mater. Design 127 (2017), 162–172.10.1016/j.matdes.2017.04.075Suche in Google Scholar

[33] C. Zeng, Y.Q. Chen, Global Pade approximations of the generalized Mittag-Leffler function and its inverse. Fract. Calc. Appl. Anal. 18, No 6 (2015), 1492–1506; 10.1515/fca-2015-0086; https://www.degruyter.com/view/j/fca.2015.18.issue-6/issue-files/fca.2015.18.issue-6.xmlSuche in Google Scholar

[34] Y. Zhang, B. Baeumer, D. M. Reeves, A tempered multiscaling stable model to simulate transport in regional-scale fractured media. Geophys. Res. Lett. 37 (2010), Art. # L11405.10.1029/2010GL043609Suche in Google Scholar

Received: 2017-9-30
Published Online: 2018-3-13
Published in Print: 2018-2-23

© 2018 Diogenes Co., Sofia

Artikel in diesem Heft

  1. Frontmatter
  2. Editorial Note
  3. FCAA related news, events and books (FCAA–volume 21–1–2018)
  4. Survey Paper
  5. From continuous time random walks to the generalized diffusion equation
  6. Survey Paper
  7. Properties of the Caputo-Fabrizio fractional derivative and its distributional settings
  8. Research Paper
  9. Exact and numerical solutions of the fractional Sturm–Liouville problem
  10. Research Paper
  11. Some stability properties related to initial time difference for Caputo fractional differential equations
  12. Research Paper
  13. On an eigenvalue problem involving the fractional (s, p)-Laplacian
  14. Research Paper
  15. Diffusion entropy method for ultraslow diffusion using inverse Mittag-Leffler function
  16. Research Paper
  17. Time-fractional diffusion with mass absorption under harmonic impact
  18. Research Paper
  19. Optimal control of linear systems with fractional derivatives
  20. Research Paper
  21. Time-space fractional derivative models for CO2 transport in heterogeneous media
  22. Research Paper
  23. Improvements in a method for solving fractional integral equations with some links with fractional differential equations
  24. Research Paper
  25. On some fractional differential inclusions with random parameters
  26. Research Paper
  27. Initial boundary value problems for a fractional differential equation with hyper-Bessel operator
  28. Research Paper
  29. Mittag-Leffler function and fractional differential equations
  30. Research Paper
  31. Complex spatio-temporal solutions in fractional reaction-diffusion systems near a bifurcation point
  32. Research Paper
  33. Differential and integral relations in the class of multi-index Mittag-Leffler functions
Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/fca-2018-0007/html
Button zum nach oben scrollen