Startseite Wall-retardation effects on particles settling through non-Newtonian fluids in parallel plates
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Wall-retardation effects on particles settling through non-Newtonian fluids in parallel plates

  • Guo-Dong Zhang EMAIL logo , Ming-Zhong Li EMAIL logo , Jian-Quan Xue , Lei Wang und Jin-Lin Tian
Veröffentlicht/Copyright: 25. Juni 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Walls can exert a retardation effect on particles settling in bounded fluid media. In this work, the parallel plate retardation effect was studied for particles falling in non-Newtonian fluids along the centreline of parallel plate ducts. The eccentric effect was also investigated for those particles which approached the wall. For spheres settling in sodium carboxymethylcellulose (CMC) solutions, the variation in wall factors against the size ratio of the sphere’s diameter to the parallel plate wall spacing shows a non-linear trend; the particle settling velocity is independent at small size ratio, and then decreases quickly with increase in size ratio. A new correlation was presented covering a wider range of size ratios (0.02 < λ < 0.83) in the flow region of 0.0011 < Re < 9.75. When particles settle in polyacrylamide solutions, the fluid elasticity reduces the wall-retardation effect and it can be deduced that the drag reduction mechanism of some polyacrylamide solutions may weaken the wall retardation effect. As the spheres settling in the CMC solutions approach the wall, the neighbouring wall exerts no retardation effect at small size ratios (≤ 0.8). Then the settling velocity reduces sharply, while the effect is negligible for polyacrylamide solutions. In comparison with cylinders, the actuating range of the neighbouring wall is smaller for parallel plates.

Acknowledgements

This study received financial support from the Programme for Changjiang Scholars and Innovative Research Team in University (IRT1294).

Symbols

A, B

fitting parameters in Eq. (8)

b

distance from centreline of parallel plates

m

d

sphere diameter

m

f

wall factor

fi

parameter in Eq. (6)

f0

wall factor at low size ratio

f

wall factor at high size ratio

G′

elastic modulus

Pa

G″

viscous modulus

Pa

K

consistency index

Pa s"

m

mode numbers

N1

first normal stress difference

n

flow behaviour index

R

maximum eccentric distance,

R = (W − d)/2

m

Re

Reynolds number

V

particle settling velocity along the

centreline

m s−1

Vb

settling velocity of the particle at position

b

m s−1

particle terminal settling velocity

m s−1

W

parallel plate width

m

Wi

Weissenberg number, Wi = N1

Greek symbols

αi

the i-th anisotropy parameter

γ

shear rate

s−1

η

absolute fluid viscosity

Pa s

ηi

the i-th partial viscosity

Pa s

ηs

viscosity of the Newtonian solvent

Pa s

λ

size ratio of sphere diameter to wall spacing

λi

the i-th relaxation time

s

ρ1

fluid density

kg m−3

σ

shear stress

Pa

χi

parameter in Eq. (7)

ω

dynamic oscillatory frequency

rads−1

References

Ambari, A., Gauthier-Manuel, B., & Guyon, E. (1985). Direct measurement of tube wall effect on the Stokes force. Physics of Fluids, 28, 1559–1561. 10.1063/1.864990.Suche in Google Scholar

Arsenijević, Z. Lj., Grbavčić, Ž. B., Garić-Grulović, R. V., & Bošković-Vragolović, N. M. (2010). Wall effects on the velocities of a single sphere settling in a stagnant and counter-current fluid and rising in a co-current fluid. Powder Technology, 203, 237–242. 10.1016/j.powtec.2010.05.013.Suche in Google Scholar

Ataíde, C. H., Pereira, F. A. R., & Barrozo, M. A. S. (1999). Wall effects on the terminal velocity of spherical particles in Newtonian and non-Newtonian fluids. Brazilian Journal of Chemical Engineering, 16, 387–394. 10.1590/s0104-66321999000400007.Suche in Google Scholar

Balaramakrishna, P. V., & Chhabra, R. P. (1992). Sedimentation of a sphere along the axis of a long square duet filled with non-Newtonian liquids. The Canadian Journal of Chemical Engineering, 70, 803–807. 10.1002/cjce.5450700427.Suche in Google Scholar

Bougas, A., & Stamatoudis, M. (1993). Wall factor for acceleration and terminal velocity of falling spheres at high Reynolds numbers. Chemical Engineering & Technology, 16, 314–317. 10.1002/ceat.270160506.Suche in Google Scholar

Brenner, H. (1961). The slow motion of a sphere through a viscous fluid towards a plane surface. Chemical Engineering Science, 34, 242–251. 10.1016/0009-2509(61)80035-3.Suche in Google Scholar

Chang, H. D. (1982). Correlation of turbulent drag reduction in dilute polymer solutions with rheological properties by an energy dissipation model. PhD. thesis, Texas A&M University, College Station, TX, USA.Suche in Google Scholar

Chhabra, R. P., Tiu, C., & Uhlherr, P. H. T. (1977). Wall effect for sphere motion in inelastic non-Newtonian fluids. In Proceedings of the 6th Australasian Hydraulics and Fluid Mechanics Conference, December 5–9, 1977. Adelaide, Australia.Suche in Google Scholar

Chhabra, R. P., & Uhlherr, P. H. T. (1980). Wall effect for high Reynolds number motion of spheres in shear thinning fluids. Chemical Engineering Communications, 5, 115–124. 10.1080/00986448008935958.Suche in Google Scholar

Chhabra, R. P., Tiu, C., & Uhlherr, P. H. T. (1981). A study of wall effects on the motion of a sphere in viscoelastic fluids. The Canadian Journal of Chemical Engineering, 59, 771–775. 10.1002/cjce.5450590619.Suche in Google Scholar

Chhabra, R. P., & Uhlherr, P. H. T. (1988). The influence of fluid elasticity on wall effects for creeping sphere motion in cylindrical tubes. The Canadian Journal of Chemical Engineering, 66, 154–157. 10.1002/cjce.5450660124.Suche in Google Scholar

Chhabra, R. P. (1995). Wall effects on free-settling velocity of non-spherical particles in viscous media in cylindrical tubes. Powder Technology, 85, 83–90. 10.1016/0032-5910(95)03012-x.Suche in Google Scholar

Chhabra, R. P. (1996). Wall effects on terminal velocity of non-spherical particles in non-Newtonian polymer solutions. Powder Technology, 88, 39–44. 10.1016/0032-5910(96)03100-2.Suche in Google Scholar

Chhabra, R. P., Agarwal, S., & Chaudhary, K. (2003). A note on wall effect on the terminal falling velocity of a sphere in quiescent Newtonian media in cylindrical tubes. Powder Technology, 129, 53–58. DOI: 10.1016/s0032-5910(02)00164-10.1016/s0032-5910(02)00164-Suche in Google Scholar

D’Avino, G., Hulsen, M. A., Snijkers, F., Vermant, J., Greco, F., & Maffettone, P. L. (2008). Rotation of a sphere in a viscoelastic liquid subjected to shear flow. Part I: Simulation results. Journal of Rheology, 52, 1331–1346. 10.1122/1.2998219.Suche in Google Scholar

Delidis, P., & Stamatoudis, M. (2009). Comparison of the velocities and the wall effect between spheres and cubes in the accelerating region. Chemical Engineering Communications, 196, 841–853. 10.1080/00986440802668182.Suche in Google Scholar

Di Felice, R. (1996). A relationship for the wall effect on the settling velocity of a sphere at any flow regime. International Journal of Multiphase Flow, 22, 527–533. 10.1016/0301-9322(96)00004-3.Suche in Google Scholar

Ely, J.W., Fowler, S. L., Tiner, R. L., Aro, D. J., Sicard, G. R., Jr., & Sigman, T. A. (2014). ”Slick water fracturing and small proppant” The future of stimulation or a slippery slope? In Proceedings of SPE Annual Technical Conference and Exhibition, October 27–29, 2014. Amsterdam, The Netherlands: Society of Petroleum Engineers. 10.2118/170784-ms.Suche in Google Scholar

Falade, A., & Brenner, H. (1985). Stokes wall effects for particles moving near cylindrical boundaries. Journal of Fluid Mechanics, 154, 145–162. 10.1017/s002211208500146x.Suche in Google Scholar

Faxén, H. (1922). Der Widerstand gegen die Bewegung einer starren Kugel in einer zähen Flüssigkeit, die zwischen zwei parallelen ebenen Wänden eingeschlossen ist. Annalen der Physik, 68, 89–119. DOI: 10.1002/andp.19223731003. (in German)10.1002/andp.19223731003Suche in Google Scholar

Fidleris, V., & Whitmore, R. L. (1961). Experimental determination of the wall effect for spheres falling axially in cylindrical vessels. British Journal of Applied Physics, 12, 490–494. 10.1088/0508-3443/12/9/311.Suche in Google Scholar

Gallego, F., & Shah, S. N. (2009). Friction pressure correlations for turbulent flow of drag reducing polymer solutions in straight and coiled tubing. Journal of Petroleum Science and Engineering, 65, 147–161. 10.1016/j.petrol.2008.12.013.Suche in Google Scholar

Giesekus, H. (1982). A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility. Journal of Non-Newtonian Fluid Mechanics, 11, 69–109. 10.1016/0377-0257(82)85016-7.Suche in Google Scholar

Giesekus, H. (1983). Stressing behaviour in simple shear flow as predicted by a new constitutive model for polymer fluids. Journal of Non-Newtonian Fluid Mechanics, 12, 367–374. 10.1016/0377-0257(83)85009-5.Suche in Google Scholar

Happel, J., & Brenner, H. (1983). Low Reynolds number hydrodynamics. The Hague, The Netherlands: Martinus Nijhoff Publishers. 10.1007/978-94-009-8352-6.Suche in Google Scholar

Higdon, J. J. L., & Muldowney, G. P. (1995). Resistance functions for spherical particles, droplets and bubbles in cylindrical tubes. Journal of Fluid Mechanics, 298, 193–210. 10.1017/s0022112095003272.Suche in Google Scholar

Holz, T., Fischer, P., & Rehage, H. (1999). Shear relaxation in the nonlinear-viscoelastic regime of a Giesekus fluid. Journal of Non-Newtonian Fluid Mechanics, 88, 133–148. 10.1016/s0377-0257(99)00016-6.Suche in Google Scholar

Ilic, V., Tullock, D., Phan-Thien, N., & Graham, A. L. (1992). Translation and rotation of spheres settling in square and circular conduits: Experiments and numerical predictions. International Journal of Multiphase Flow, 18, 1061–1075. 10.1016/0301-9322(92)90075-r.Suche in Google Scholar

Kaiser, A. E., Graham, A. L., & Mondy, L. A. (2004). Non- Newtonian wall effects in concentrated suspensions. Journal of Non-Newtonian Fluid Mechanics, 116, 479–488. 10.1016/j.jnnfm.2003.11.004.Suche in Google Scholar

Lali, A. M., Khare, A. S., Joshi, J. B., & Nigam, K. D. P. (1989). Behaviour of solid particles in viscous non-Newtonian solutions: Settling velocity, wall effects and bed expansion in solid-liquid fluidized beds. Powder Technology, 57, 39–50. 10.1016/0032-5910(89)80102-0.Suche in Google Scholar

Li, C. L., Lafollette, R., Sookprasong, A., & Wang, S. (2013). Characterization of hydraulic fracture geometry in shale gas reservoirs using early production data. In Proceedings of the International Petroleum Technology Conference, March 26–28, 2013. Beijing, China: International Petroleum Technology Conference. 10.2523/16896-ms.Suche in Google Scholar

Liu, Y., & Sharma, M. M. (2005). Effect of fracture width and fluid rheology on proppant settling and retardation: An experimental study. SPE Annual Technical Conference and Exhibition, October 9–12, Dallas, TX, USA: Society of Petroleum Engineers. 10.2118/96208-ms.Suche in Google Scholar

Lorentz, H. A. (1907). Abhandlungen über theoretische Physik (chapter II, pp. 23–42). Leipzig, Germany: B. G. Teubner. (in German)Suche in Google Scholar

Machač, I., & Lecjaks, Z. (1995). Wall effect for a sphere falling through a non-Newtonian fluid in a rectangular duct. Chemical Engineering Science, 50, 143–148. 10.1016/0009-2509(94)00211-9.Suche in Google Scholar

Madhav, G. V., & Chhabra, R. P. (1994). Settling velocities of non-spherical particles in non-Newtonian polymer solutions. Powder Technology, 78, 77–83. 10.1016/0032-5910(93)02761-x.Suche in Google Scholar

Malhotra, S., & Sharma, M. M. (2012). Settling of spherical particles in unbounded and confined surfactant-based shear thinning viscoelastic fluids: An experimental study. Chemical Engineering Science, 84, 646–655. 10.1016/j.ces.2012.09.010.Suche in Google Scholar

Missirlis, K. A., Assimacopoulos, D., Mitsoulis, E., & Chhabra, R. P. (2001). Wall effects for motion of spheres in powerlaw fluids. Journal of Non-Newtonian Fluid Mechanics, 96, 459–471. 10.1016/s0377-0257(00)00189-0.Suche in Google Scholar

Miyamura, A., Iwasaki, S., & Ishii, T. (1981). Experimental wall correction factors of single solid spheres in triangular and square cylinders, and parallel plates. International Journal of Multiphase Flow, 7, 41–46. 10.1016/0301-9322(81)90013-6.Suche in Google Scholar

Okuda, K. (1975). Pipe wall effects on suspension velocities of single freely-suspended spheres and on terminal velocities of single spheres in a pipe. Bulletin of JSME, 18, 1142–1150. 10.1299/jsme1958.18.1142.Suche in Google Scholar

Snijkers, F., D’Avino, G., Maffettone, P. L., Greco, F., Hulsen, M. A., & Vermant, J. (2011). Effect of viscoelasticity on the rotation of a sphere in shear flow. Journal of Non-Newtonian Fluid Mechanics, 166, 363–372. 10.1016/j.jnnfm.2011.01.004.Suche in Google Scholar

Song, D. Y., Gupta, R. K., & Chhabra, R. P. (2009). Wall effects on a sphere falling in quiescent power law fluids in cylindrical tubes. Industrial & Engineering Chemistry Research, 48, 5845–5856. 10.1021/ie900176y.Suche in Google Scholar

Tomac, I., & Gutierrez, M. (2015). Micromechanics of proppant agglomeration during settling in hydraulic fractures. Journal of Petroleum Exploration and Production Technology, 5, 417–434. 10.1007/s13202-014-0151-9.Suche in Google Scholar

Uhlherr, P. H. T., & Chhabra, R. P. (1995). Wall effect for the fall of spheres in cylindrical tubes at high Reynolds number. The Canadian Journal of Chemical Engineering, 73, 918–923. 10.1002/cjce.5450730615.Suche in Google Scholar

Unnikrishnan, A., & Chhabra, R. P. (1990). Slow parallel motion of cylinders in non-Newtonian media: wall effects and drag coefficient. Chemical Engineering and Processing: Process Intensification, 28, 121–125. 10.1016/0255-2701(90)80008-s.Suche in Google Scholar

Verhulst, K., Moldenaers, P., & Minale, M. (2007). Drop shape dynamics of a Newtonian drop in a non-Newtonian matrix during transient and steady shear flow. Journal of Rheology, 51, 261–273. 10.1122/1.2426973.Suche in Google Scholar

Wang, Y. T., & Miskimins, J. L. (2010). Experimental investigations of hydraulic fracture growth complexity in slickwater fracturing treatments. In Proceedings of the Tight Gas Completions Conference, November 2–3, 2010. San Antonio, TX, USA: Society of Petroleum Engineers. 10.2118/137515-ms.Suche in Google Scholar

Yin, J. C., Xie, J., Datta-Gupta, A., & Hill, A. D. (2011). Improved characterization and performance assessment of shale gas wells by integrating stimulated reservoir volume and production data. In Proceedings of the SPE Eastern Regional Meeting, August 17–19, 2011. Columbus, OH, USA: Society of Petroleum Engineers. 10.2118/148969-ms.Suche in Google Scholar

Zhang, G. D., Li, M. Z., Li, J. B., Yu, M., Qi, M. H., & Bai, Z. F. (2015). Wall effects on spheres settling through non-Newtonian fluid media in cylindrical tubes. Journal of Dispersion Science and Technology, 36, 1199–1207. 10.1080/01932691.2014.966309.Suche in Google Scholar

Received: 2015-10-28
Revised: 2016-2-20
Accepted: 2016-3-1
Published Online: 2016-6-25
Published in Print: 2016-10-1

© 2016 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Original Paper
  2. Simultaneous analysis of polar and non-polar components of cell membrane phospholipids by GC-MS
  3. Original Paper
  4. Cloud point extraction of disulfiram for its HPLC-MS/MS determination in synthetic urine
  5. Original Paper
  6. Revealing the seed proteome of the health benefitting grain amaranth (Amaranthus cruentus L.)
  7. Original Paper
  8. Possible role of hydrolytic enzymes (Sap, Kex2) in Candida albicans response to aromatic compounds bearing a sulfone moiety
  9. Original Paper
  10. Using nutritional and oxidative stress to increase content of healthbeneficial fatty acids in oleaginous and non-oleaginous yeasts
  11. Original Paper
  12. Fatty acids and amino acids of entomopathogenic fungus Conidiobolus coronatus grown on minimal and rich media
  13. Original Paper
  14. Promotional effect of cobalt addition on catalytic performance of Ce0.5Zr0.5O2 mixed oxide for diesel soot combustion
  15. Original Paper
  16. Microwave-assisted continuous reactive distillation process for preparation of ethyl acetate
  17. Original Paper
  18. Wall-retardation effects on particles settling through non-Newtonian fluids in parallel plates
  19. Original Paper
  20. Microwave-assisted decomposition of fgd gypsum in the presence of magnetite and anthracite
  21. Original Paper
  22. Effect of PHB on the properties of biodegradable PLA blends
  23. Original Paper
  24. Thiophene-free diphenyl-amino-stilbene-diketo-pyrrolo-pyrrole derivatives as donors for organic bulk heterojunction solar cells
  25. Short Communication
  26. UV-induced reduction of Ag+ by diazene sulphonates: new method of metallisation of surfaces
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/chempap-2016-0082/html
Button zum nach oben scrollen