Startseite Effect of fuel content on formation of zinc aluminate nano and micro-particles synthesised by high rate sol–gel autoignition of glycine-nitrates
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of fuel content on formation of zinc aluminate nano and micro-particles synthesised by high rate sol–gel autoignition of glycine-nitrates

  • Shiva Salem EMAIL logo
Veröffentlicht/Copyright: 17. Dezember 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The autoignition technique using glycine as fuel and related nitrate salts as an oxidiser is able to produce zinc aluminate spinel. The precursors were synthesised with lean and rich fuel at pH of 7.0 and the materials so obtained were calcined at various temperatures ranging from 600-1200°C. The autoignition process of precursors was studied by the simultaneous thermo-gravimetric and differential thermal analyses to determine the ignition mechanism. The calcined powders were characterised by X-ray diffraction, Brunauer-Emmett-Teller technique and transmission electron microscopy. The product contains nano-sized particles with an average size of approximately 20 nm. The XRD patterns showed the formation of ZnO in the powder obtained by the fuel-rich precursor and calcined at 600°C which disappears at 800°C due to solid-state reaction and proper crystallisation after heat treatment. The results presented here can be useful in manufacturing nano and micro-sized ZnAl2O4 on an industrial scale using the combustion technique.

References

Alves, C. T., Oliveira, A., Carneiro, S. A. V., Silva, A. G., Andrade, H. M. C., Vieira de Melo, S. A. B., & Torres, E. A. (2013). Transesterification of waste frying oil using a zinc aluminate catalyst. Fuel Processing Technology, 106, 102-107. DOI: 10.1016/j.fuproc.2012.07.008.10.1016/j.fuproc.2012.07.008Suche in Google Scholar

Battiston, S., Rigo, C., Severo, E. C., Mazutti, M. A., Kuhn, R. C., Gündel, A., & Foletto, E. L. (2014). Synthesis of zinc aluminate (ZnAl2O4) spinel and its application as photocatalyst. Materials Research, 17, 734-738. DOI: 10.1590/s1516-14392014005000073.10.1590/S1516-14392014005000073Suche in Google Scholar

Charinpanitkul, T., Poommarin, P., Wongkaew, A., & Kim, K. S. (2009). Dependence of zinc aluminate microscopic structure on its synthesis. Journal of Industrial and Engineering Chemistry, 15, 163-166. DOI: 10.1016/j.jiec.2008.09.017.10.1016/j.jiec.2008.09.017Suche in Google Scholar

Chen, L. M., Sun, X. M., Liu, Y. N., Zhou, K. B., & Li, Y. D. (2004). Porous ZnAl2O4 synthesized by a modified citrate technique. Journal of Alloys and Compounds, 376, 257-261. DOI: 10.1016/j.jallcom.2004.01.013.10.1016/j.jallcom.2004.01.013Suche in Google Scholar

Davar, F., & Salavati-Niasari, M. (2011). Synthesis and characterization of spinel-type zinc aluminate nanoparticles by a modified sol-gel method using new precursor. Journal of Alloys and Compounds, 509, 2487-2492. DOI: 10.1016/j. jallcom.2010.11.058.Suche in Google Scholar

Dean, J. A. (1985). Lange’s handbook of chemistry (13th ed.). New York, NY, USA: McGraw-Hill.Suche in Google Scholar

Fan, G. L., Wang, J., & Li, F. (2011). Synthesis of high-surfacearea micro/mesoporous ZnAl2O4 catalyst support and application in selective hydrogenation of o-chloronitrobenzene. Catalysis Communications, 15, 113-117. DOI: 10.1016/j. catcom.2011.08.024.Suche in Google Scholar

Foletto, E. L., Battiston, S., Simões, J. M., Bassaco, M. M., Pereira, L. S. F., Flores, E. M. M., & Müller, E. I. (2012). Synthesis of ZnAl2O4 nanoparticles by different routes and the effect of its pore size on the photocatalytic process. Microporous and Mesoporous Materials, 163, 29-33. DOI: 10.1016/j.micromeso.2012.06.039.10.1016/j.micromeso.2012.06.039Suche in Google Scholar

Gama, L., Ribeiro, M. A., Barros, B. S., Kiminami, R. H. A., Weber, I. T., & Costa, A. C. F. M. (2009). Synthesis and characterization of the NiAl2O4, CoAl2 O4 and ZnAl2O4 spinels by the polymeric precursors method. Journal of Alloys and Compounds, 483, 453-455. DOI: 10.1016/j.jallcom.2008.08.111.10.1016/j.jallcom.2008.08.111Suche in Google Scholar

Hou, Q. Q., Meng, F. J., & Sun, J. M. (2013). Electrical and optical properties of Al-doped ZnO and ZnAl2O4 films prepared by atomic layer deposition. Nanoscale Research Letters, 8, 144. DOI: 10.1186/1556-276x-8-144.10.1186/1556-276X-8-144Suche in Google Scholar PubMed PubMed Central

Hwang, C. C., & Wu, T. Y. (2004). Combustion synthesis of nanocrystalline ZnO powders using zinc nitrate and glycine as reactants - influence of reactant composition. Journal of Materials Science, 39, 6111-6115. DOI: 10.1023/b:jmsc.0000041713.37366.c2.10.1023/B:JMSC.0000041713.37366.c2Suche in Google Scholar

Ianoş, R., Borcănescu, S., & Lazău, R. (2014). Large surface area ZnAl2O4 powders prepared by a modified combustion technique. Chemical Engineering Journal, 240, 260-263. DOI: 10.1016/j.cej.2013.11.082.10.1016/j.cej.2013.11.082Suche in Google Scholar

Kavas, H., Kasapoğlu, N., Baykal, A., & Köseoğlu, Y. (2009). Characterization of NiFe2O4 nanoparticles synthesized by various methods. Chemical Papers, 63, 450-455. DOI: 10.2478/s11696-009-0034-6.10.2478/s11696-009-0034-6Suche in Google Scholar

Khaledi, A. G., Afshar, S., & Jahromi, H. S. (2012). Improving ZnAl2O4 structure by using chelating agents. Materials Chemistry and Physics, 135, 855-862. DOI: 10.1016/j. matchemphys.2012.05.070.Suche in Google Scholar

Kumar, K., Ramamoorthy, K., Chandramohan, R., & Sankaranarayanan, K. (2006). A novel growth method for ZnAl2O4 single crystals. Crystal Research and Technology, 41, 217-220. DOI: 10.1002/crat.200510562.10.1002/crat.200510562Suche in Google Scholar

Kumar, K., Ramamoorthy, K., Koinkar, P. M., Chandramohan, R., & Sankaranarayanan, K. (2007). A novel way of modifying nano grain size by solution concentration in the growth of ZnAl2O4 thin films. Journal of Nanoparticle Research, 9, 331-335. DOI: 10.1007/s11051-006-9108-3.10.1007/s11051-006-9108-3Suche in Google Scholar

Li, Z. S., Zhang, S. W., & Lee, W. E. (2007). Molten salt synthesis of zinc aluminate powder. Journal of the European Ceramic Society, 27, 3407-3412. DOI: 10.1016/j.jeurceramsoc. 2007.02.195.Suche in Google Scholar

Mathur, S., Veith,M., Haas, M., Shen, H., Lecerf, N., Huch, V., Hüfner, S., Haberkorn, R., Beck, H. P., & Jilavi, M. (2001). Single-source sol-gel synthesis of nanocrystalline ZnAl2O4: Structural and optical properties. Journal of the American Ceramic Society, 84, 1921-1928. DOI: 10.1111/j.1151-2916.2001.tb00938.x.10.1111/j.1151-2916.2001.tb00938.xSuche in Google Scholar

Motloung, S. V., Dejene, F. B., Swart, H. C., & Ntwaeaborwa, O. M. (2014). Effects of Pb2+ ions concentration on the structure and PL intensity of Pb-doped ZnAl2O4 nanocrystals synthesized using sol-gel process. Journal of Sol-Gel Science and Technology, 70, 422-427. DOI: 10.1007/s10971-014-3302-z.10.1007/s10971-014-3302-zSuche in Google Scholar

Okal, J., & Zawadzki, M. (2013). Catalytic combustion of methane over ruthenium supported on zinc aluminate spinel. Applied Catalysis A, 453, 349-357. DOI: 10.1016/j.apcata. 2012.12.040.Suche in Google Scholar

Pacewska, B., & Keshr, M. (2002). Thermal transformations of aluminum nitrate hydrate. Thermochimica Acta, 385, 73-80. DOI: 10.1016/s0040-6031(01)00703-1.10.1016/S0040-6031(01)00703-1Suche in Google Scholar

Peng, T. Y., Liu, X., Dai, K., Xiao, J. R., & Song, H. B. (2006). Effect of acidity on the glycine-nitrate combustion synthesis of nano crystalline alumina powder. Materials Research Bulletin, 41, 1638-1645. DOI: 10.1016/j.materresbull.2006.02. 026.Suche in Google Scholar

Purohit, R. D., Sharma, B. P., Pillai, K. T., & Tyagi, A. K. (2001). Ultrafine ceria powders via glycine-nitrate combustion. Materials Research Bulletin, 36, 2711-2721. DOI: 10.1016/s0025-5408(01)00762-0.10.1016/S0025-5408(01)00762-0Suche in Google Scholar

Quintana-Solórzano, R., Valente, J. S., Hernández-Beltrán, F. J., & Castillo-Araiza, C. O. (2008). Zinc-aluminates for an in situ sulfur reduction in cracked gasoline. Applied Catalysis B, 81, 1-13. DOI: 10.1016/j.apcatb.2007.12.001.10.1016/j.apcatb.2007.12.001Suche in Google Scholar

Ragupathi, C., Kennedy, L. J., & Vijaya, J. J. (2014). A new approach: Synthesis, characterization and optical studies of nano-zinc aluminate. Advanced Powder Technology, 25, 267-273. DOI: 10.1016/j.apt.2013.04.013.10.1016/j.apt.2013.04.013Suche in Google Scholar

Salem, S. (2015). Rapid combustion synthesis of pure nanocrystalline gahnite: Effect of solution pH on powder characteristics. Thermochimica Acta, 609, 75-81. DOI: 10.1016/j. tca.2015.04.017.Suche in Google Scholar

Song, X. Y., Zheng, S. H., Zhang, J., Li, W., Chen, Q., & Cao, B. Q. (2012). Synthesis of monodispersed ZnAl2O4 nanoparticles and their tribology properties as lubricant additives. Materials Research Bulletin, 47, 4305-4310. DOI: 10.1016/j.materresbull.2012.09.013.10.1016/j.materresbull.2012.09.013Suche in Google Scholar

Staszak, W., Zawadzki, M., & Okal, J. (2010). Solvothermal synthesis and characterization of nanosized zinc aluminate spinel used in iso-butane combustion. Journal of Alloys and Compounds, 492, 500-507. DOI: 10.1016/j. jallcom.2009.11.151.Suche in Google Scholar

Toniolo, J. C., Lima, M. D., Takimi, A. S., & Bergmann, C. P. (2005). Synthesis of alumina powders by the glycine-nitrate combustion process. Materials Research Bulletin, 40, 561-571. DOI: 10.1016/j.materresbull.2004.07.019.10.1016/j.materresbull.2004.07.019Suche in Google Scholar

Valenzuela, M. A., Jacobs, J. P., Bosch, P., Reijne, S., Zapata, B., & Brongersma, H. H. (1997a). The influence of the preparation method on the surface structure of ZnAl2O4. Applied Catalysis A, 148, 315-324. DOI: 10.1016/s0926-860x(96)00235-9.10.1016/S0926-860X(96)00235-9Suche in Google Scholar

Valenzuela, M. A., Bosch, P., Aguilar-Rios, G., Montoya, A., & Schifter, I. (1997b). Comparison between sol-gel, coprecipitation and wet mixing synthesis of ZnAl2O4. Journal of Sol-Gel Science and Technology, 8, 107-110. DOI: 10.1023/a:1026471709899.10.1023/A:1026471709899Suche in Google Scholar

Visinescu, D., Jurca, B., Ianculescu, A., & Carp, O. (2011). Starch - A suitable fuel in new low-temperature combustionbased synthesis of zinc aluminate oxides. Polyhedron, 30, 2824-2831. DOI: 10.1016/j.poly.2011.08.006.10.1016/j.poly.2011.08.006Suche in Google Scholar

Wrzyszcz, J., Zawadzki, M., Trawczyński, J., Grabowska, H., & Miśta, W. (2001). Some catalytic properties of hydrothermally synthesised zinc aluminate spinel. Applied Catalysis A, 210, 263-269. DOI: 10.1016/s0926-860x(00)00821-8.10.1016/S0926-860X(00)00821-8Suche in Google Scholar

Wrzyszcz, J., Zawadzki, M., Trzeciak, A. M., & Ziołkowski, J. J. (2002). Rhodium complexes supported on zinc aluminate spinel as catalysts for hydroformylation and hydrogenation: Preparation and activity. Journal of Molecular Catalysis A, 189, 203-210. DOI: 10.1016/s1381-1169(02)00073-0.10.1016/S1381-1169(02)00073-0Suche in Google Scholar

Zawadzki, M. (2006). Synthesis of nanosized and microporous zinc aluminate spinel by microwave assisted hydrothermal method (microwave-hydrothermal synthesis of ZnAl2O4). Solid State Sciences, 8, 14-18. DOI: 10.1016/j. solidstatesciences.2005.08.006.Suche in Google Scholar

Zhang, L., Yan, J. H., Zhou, M. J., Yang, Y. H., & Liu, Y. N. (2013). Fabrication and photocatalytic properties of spheres-in-spheres ZnO/ZnAl2O4 composite hollow microspheres. Applied Surface Science, 268, 237-245. DOI: 10.1016/j.apsusc.2012.12.069.10.1016/j.apsusc.2012.12.069Suche in Google Scholar

Zhao, X. F., Wang, L., Xu, X., Lei, X. D., Xu, S. L., & Zhang, F. Z. (2012). Fabrication and photocatalytic properties of novel ZnO/ZnAl2O4 nano-composite with ZnAl2O4 dispersed inside ZnO network. AIChE Journal, 58, 573-582. DOI: 10.1002/aic.12597.10.1002/aic.12597Suche in Google Scholar

Zhu, Z. R., Li, X. Y., Zhao, Q. D., Liu, S. M., Hu, X. J., & Chen, G. H. (2011). Facile solution synthesis and characterization of porous cubic-shaped superstructure of ZnAl2O4. Materials Letters, 65, 194-197. DOI: 10.1016/j.matlet.2010.09.085 10.1016/j.matlet.2010.09.085Suche in Google Scholar

Received: 2015-2-7
Revised: 2015-8-19
Accepted: 2015-8-23
Published Online: 2015-12-17
Published in Print: 2016-3-1

Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Synthesis and properties of new N,N′-phenyltetrazole podand
  2. Molecular diagnosis of Pompe disease using MALDI TOF/TOF and 1H NMR
  3. Erythritol biosynthesis from glycerol by Yarrowia lipolytica yeast: effect of osmotic pressure
  4. Cloning and expression of two genes coding endo-β-1,4-glucanases from Trichoderma asperellum PQ34 in Pichia pastoris
  5. Adsorption desulphurisation of dimethyl sulphide using nickel-based Y zeolites pretreated by hydrogen reduction
  6. Equilibrium and kinetics of wetting hydrophobic microporous membrane in sodium dodecyl benzene sulphonate and diethanolamine aqueous solutions
  7. Separation of urea adducts in the analysis of complex mineral fertilisers
  8. Cheese whey tangential filtration using tubular mineral membranes
  9. Characterization of the quality of novel rye-buckwheat ginger cakes by chemical markers and antioxidant capacity
  10. A new high-temperature inorganic–organic proton conductor: lanthanum sulfophenyl phosphate
  11. Membranes with a plasma deposited titanium isopropoxide layer
  12. Effect of fuel content on formation of zinc aluminate nano and micro-particles synthesised by high rate sol–gel autoignition of glycine-nitrates
  13. Poly(butyl cyanoacrylate) nanoparticles stabilised with poloxamer 188: particle size control and cytotoxic effects in cervical carcinoma (HeLa) cells
  14. Solubility enhancement of phenanthrene using novel chelating surfactant
  15. Physicochemical and excess properties of binary mixtures of (1-alkyl-3-methylimidazoliumchloride/bromide + ethylene glycol) at T = (288.15 to 333.15) K
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0205/html
Button zum nach oben scrollen