Home Equilibrium and kinetics of wetting hydrophobic microporous membrane in sodium dodecyl benzene sulphonate and diethanolamine aqueous solutions
Article
Licensed
Unlicensed Requires Authentication

Equilibrium and kinetics of wetting hydrophobic microporous membrane in sodium dodecyl benzene sulphonate and diethanolamine aqueous solutions

  • Li-Yun Cui , Zhong-Wei Ding EMAIL logo , Li-Ying Liu and Hao-Si Han
Published/Copyright: December 17, 2015
Become an author with De Gruyter Brill

Abstract

Liquid penetrations into hydrophobic capillaries are controlled by the adsorption and diffusion of the solute in the vicinity of the moving meniscus. The wetting process of microporous hydrophobic polyvinylidenefluoride (PVDF) and polytetrafluoroethylene (PTFE) membrane was investigated in both sodium dodecyl benzene sulphonate (SDBS) and diethanolamine (DEA) aqueous solutions. The experimental results revealed that wetting both the PVDF and PTFE membranes in SDBS solutions at high concentrations proceeded in two stages: rapid wetting and slow wetting, but this transition in the wetting rate was not observed during the membrane wetting at low SDBS concentration and in DEA solutions. The membrane wetting process was accelerated by increasing the solution temperature.

References

Aguila-Hernández, J., Trejo, A., & Gracia-Fadrique, J. (2001). Surface tension of aqueous solutions of alkanolamines: Single amines, blended amines and systems with nonionic surfactants. Fluid Phase Equilibria, 185, 165-175. DOI: 10.1016/s0378-3812(01)00467-8.10.1016/S0378-3812(01)00467-8Search in Google Scholar

Boributh, S., Rongwong, W., Assabumrungrat, S., Laosiripojana, N., & Jiraratananon, R. (2012). Mathematical modeling and cascade design of hollow fiber membrane contactor for CO2 absorption by monoethanolamine. Journal of Membrane Science, 401, 175-189. DOI: 10.1016/j.memsci.2012. 01.048.Search in Google Scholar

Boributh, S., Jiraratananon, R., & Li, K. (2013). Analytical solutions for membrane wetting calculations based on lognormal and normal distribution functions for CO2 absorption by a hollow fiber membrane contactor. Journal of Membrane Science, 429, 459-472. DOI: 10.1016/j.memsci.2012.11.074.10.1016/j.memsci.2012.11.074Search in Google Scholar

Chanachai, A., Meksup, K., & Jiraratananon, R. (2010). Coating of hydrophobic hollow fiber PVDF membrane with chitosan for protection against wetting and flavor loss in osmotic distillation process. Separation and Purification Technology, 72, 217-224. DOI: 10.1016/j.seppur.2010.02.014.10.1016/j.seppur.2010.02.014Search in Google Scholar

Churaev, N. V., Martynov, G. A., Starov, V. M., & Zorin, Z. M. (1981). Some features of capillary imbibition of surfactant solutions. Colloid and Polymer Science, 259, 747-752. DOI: 10.1007/bf01419320.10.1007/BF01419320Search in Google Scholar

Churaev, N. V., & Zorin, Z. M. (1995). Penetration of aqueous surfactant solutions into thin hydrophobized capillaries. Colloids and Surfaces A, 100, 131-138. DOI: 10.1016/0927-7757(95)03150-c.10.1016/0927-7757(95)03150-CSearch in Google Scholar

Cui, L. Y., Ding, Z. W., Liu, L. Y., & Li, Y. P. (2015). Modeling and experimental study of membrane wetting in microporous hollow fiber membrane contactors. The Canadian Journal of Chemical Engineering, 93, 1254-1265. DOI: 10.1002/cjce.22210.10.1002/cjce.22210Search in Google Scholar

Faiz, R., & Al-Marzouqi, M. (2009). Mathematical modeling for the simultaneous absorption of CO2 and H2S usingMEA in hollow fiber membrane contactors. Journal of Membrane Science, 342, 269-278. DOI: 10.1016/j.memsci.2009.06.050.10.1016/j.memsci.2009.06.050Search in Google Scholar

Fries, N., & Dreyer, M. (2008). An analytic solution of capillary rise restrained by gravity. Journal of Colloid and Interface Science, 320, 259-263. DOI: 10.1016/j.jcis.2008.01.009.10.1016/j.jcis.2008.01.009Search in Google Scholar PubMed

Fu, D., Wang, L. F., & Wu, X. C. (2012). Investigation of the surface tension for diethanolamine-CO2 aqueous solutions. ActaChimicaSinica, 70, 339-344. DOI: 10.6023/a1105243.10.6023/A1105243Search in Google Scholar

Gryta, M. (2005). Long-term performance of membrane distillation process. Journal of Membrane Science, 265, 153-159. DOI: 10.1016/j.memsci.2005.04.049.10.1016/j.memsci.2005.04.049Search in Google Scholar

Gryta, M., Grzechulska-Damszel, J., Markowska, A., & Karakulski, K. (2009). The influence of polypropylene degradation on the membrane wettability during membrane distillation. Journal of Membrane Science, 326, 493-502. DOI: 10.1016/j.memsci.2008.10.022.10.1016/j.memsci.2008.10.022Search in Google Scholar

Keshavarz, P., Fathikalajahi, J., & Ayatollahi, S. (2008). Mathematical modeling of the simultaneous absorption of carbon dioxide and hydrogen sulfide in a hollow fiber membrane contactor. Separation and Purification Technology, 63, 145-155. DOI: 10.1016/j.seppur.2008.04.008.10.1016/j.seppur.2008.04.008Search in Google Scholar

Khaisri, S., deMontigny, D., Tontiwachwuthikul, P., & Jiraratananon, R. (2010). A mathematical model for gas absorption membrane contactors that studies the effect of partially wetted membranes. Journal of Membrane Science, 347, 228-239. DOI: 10.1016/j.memsci.2009.10.028.10.1016/j.memsci.2009.10.028Search in Google Scholar

Kreulen, H., Smolders, C. A., Versteeg, G. F., & van Swaaij, W. P. M. (1993). Microporous hollow fiber membrane modules as gas-liquid contactors Part 2. Mass transfer with chemical reaction. Journal of Membrane Science, 78, 217-238. DOI: 10.1016/0376-7388(93)80002-f.10.1016/0376-7388(93)80002-FSearch in Google Scholar

Lee, K. S., Ivanova, N., Starov, V. M., Hilal, N., & Dutschk, V. (2008). Kinetics of wetting and spreading by aqueous surfactant solutions. Advances in Colloid and Interface Science, 144, 54-65. DOI: 10.1016/j.cis.2008.08.005.10.1016/j.cis.2008.08.005Search in Google Scholar PubMed

Lu, J. G., Zheng, Y. F., & Cheng, M. D. (2008). Wetting mechanism in mass transfer process of hydrophobic membrane gas absorption. Journal of Membrane Science, 308, 180-190. DOI: 10.1016/j.memsci.2007.09.051.10.1016/j.memsci.2007.09.051Search in Google Scholar

Luis, P., Van der Bruggen, B., & Van Gerven, T. (2011). Nondispersive absorption for CO2 capture: From the laboratory to industry. Journal of Chemical Technology & Biotechnology, 86, 769-775. DOI: 10.1002/jctb.2614.10.1002/jctb.2614Search in Google Scholar

Mansourizadeh, A., Ismail, A. F., & Matsuura, T. (2010). Effect of operating onditions on the physical and chemical CO2 absorption through the PVDF hollow fiber membrane contactor. Journal of Membrane Science, 353, 192-200. DOI: 10.1016/j.memsci.2010.02.054.10.1016/j.memsci.2010.02.054Search in Google Scholar

Markicevic, B., Hoff, K., Li, H., Zand, A. R., & Navaz, H. K. (2012). Capillary force driven primary and secondary unidirectional flow of wetting liquid into porous medium. International Journal of Multiphase Flow, 39, 193-204. DOI: 10.1016/j.ijmultiphaseflow.2011.09.008.10.1016/j.ijmultiphaseflow.2011.09.008Search in Google Scholar

Mavroudi, M., Kaldis, S. P., & Sakellaropoulos, G. P. (2006). A study of mass transfer resistance in membrane gas-liquid contacting processes. Journal of Membrane Science, 272, 103-115. DOI: 10.1016/j.memsci.2005.07.025.10.1016/j.memsci.2005.07.025Search in Google Scholar

Mosadegh-Sedghi, S., Rodrigue, D., Brisson, J., & Iliuta, M. C. (2014). Wetting phenomenon in membrane contactors. Causes and prevention. Journal of Membrane Science, 452, 332-353. DOI: 10.1016/j.memsci.2013.09.055.10.1016/j.memsci.2013.09.055Search in Google Scholar

Mykhaylyk, T. A., Evans, S. D., Fernyhough, C. M., Hamley, I. W., & Henderson, J. R. (2003). Surface energy of ethylene-co-1-butene copolymers determined by contact angle methods. Journal of Colloid and Interface Science, 260, 234-239. DOI: 10.1016/s0021-9797(02)00188-1.10.1016/S0021-9797(02)00188-1Search in Google Scholar

Siebold, A., Walliser, A., Nardin, M., Oppliger, M., & Schultz, J. (1997). Capillary rise for thermodynamic characterization of solid particle surface. Journal of Colloid and Interface Science, 186, 60-70. DOI: 10.1006/jcis.1996.4640.10.1006/jcis.1996.4640Search in Google Scholar PubMed

Starov, V. M., Kostvintsev, S. R., Sobolev, V. D., Velarde, M. G., & Zhdanov, S. A. (2002). Spreading of liquid drop over dry porous layers: Complete wetting case. Journal of Colloid and Interface Science, 252, 397-408. DOI: 10.1006/jcis.2002.8450.10.1006/jcis.2002.8450Search in Google Scholar PubMed

Starov, V. M. (2004). Surfactant solutions and porous substrates: Spreading and imbibition. Advances in Colloid and Interface Science, 111, 3-27. DOI: 10.1016/j.cis.2004.07.007.10.1016/j.cis.2004.07.007Search in Google Scholar PubMed

Starov, V. M., Zhdanov, S. A., & Velarde, M. G. (2004). Capillary imbibition of surfactant solutions in porous media and thin capillaries: Partial wetting case. Journal of Colloid and Interface Science, 273, 589-595. DOI: 10.1016/j.jcis.2004.02.033.10.1016/j.jcis.2004.02.033Search in Google Scholar PubMed

Wang, R., Li, D. F., Zhou, C., Liu, M., & Liang, D. T. (2004). Impact of DEA solutions with and without CO2 loading on porous polypropylene membranes intended for use as contactors. Journal of Membrane Science, 229, 147-157. DOI: 10.1016/j.memsci.2003.10.022.10.1016/j.memsci.2003.10.022Search in Google Scholar

Wang, R., Zhang, H. Y., Feron, P. H. M., & Liang, D. T. (2005). Influence of membrane wetting on CO2 capture in microporous hollow fiber membrane contactors. Separation and Purification Technology, 46, 33-40. DOI: 10.1016/j.seppur.2005.04.007.10.1016/j.seppur.2005.04.007Search in Google Scholar

Wang, F. K., & Fan, X. W. (2008). Surface tensions measurement of aqueous solutions of sodium dodecyl benzene sulfonate. Journal of Henan Normal University (Natural Science), 36(3), 66-69.Search in Google Scholar

Zhang, H. Y., Wang, R., Liang, D. T., & Tay, J. H. (2008). Theoretical and experimental studies of membrane wetting in the membrane gas-liquid contacting process for CO2 absorption. Journal of Membrane Science, 308, 162-170. DOI: 10.1016/j.memsci.2007.09.050.10.1016/j.memsci.2007.09.050Search in Google Scholar

Zhang, J., Qiu, Y., & Yu, D. Y. (2009). Critical micelle concentration determination of sodium dodecyl benzene sulfonate by synchronous fluorescence spectrometry. Chinese Journal of Applied Chemistry, 26, 1480-1483.Search in Google Scholar

Zhmud, B. V., Tiberg, F., & Hallstensson, K. (2000). Dynamics of capillary rise. Journal of Colloid and Interface Science, 228, 263-269. DOI: 10.1006/jcis.2000.6951. 10.1006/jcis.2000.6951Search in Google Scholar PubMed

Received: 2015-3-18
Revised: 2015-7-8
Accepted: 2015-7-9
Published Online: 2015-12-17
Published in Print: 2016-3-1

Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Synthesis and properties of new N,N′-phenyltetrazole podand
  2. Molecular diagnosis of Pompe disease using MALDI TOF/TOF and 1H NMR
  3. Erythritol biosynthesis from glycerol by Yarrowia lipolytica yeast: effect of osmotic pressure
  4. Cloning and expression of two genes coding endo-β-1,4-glucanases from Trichoderma asperellum PQ34 in Pichia pastoris
  5. Adsorption desulphurisation of dimethyl sulphide using nickel-based Y zeolites pretreated by hydrogen reduction
  6. Equilibrium and kinetics of wetting hydrophobic microporous membrane in sodium dodecyl benzene sulphonate and diethanolamine aqueous solutions
  7. Separation of urea adducts in the analysis of complex mineral fertilisers
  8. Cheese whey tangential filtration using tubular mineral membranes
  9. Characterization of the quality of novel rye-buckwheat ginger cakes by chemical markers and antioxidant capacity
  10. A new high-temperature inorganic–organic proton conductor: lanthanum sulfophenyl phosphate
  11. Membranes with a plasma deposited titanium isopropoxide layer
  12. Effect of fuel content on formation of zinc aluminate nano and micro-particles synthesised by high rate sol–gel autoignition of glycine-nitrates
  13. Poly(butyl cyanoacrylate) nanoparticles stabilised with poloxamer 188: particle size control and cytotoxic effects in cervical carcinoma (HeLa) cells
  14. Solubility enhancement of phenanthrene using novel chelating surfactant
  15. Physicochemical and excess properties of binary mixtures of (1-alkyl-3-methylimidazoliumchloride/bromide + ethylene glycol) at T = (288.15 to 333.15) K
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0208/html
Scroll to top button