Home Adsorption desulphurisation of dimethyl sulphide using nickel-based Y zeolites pretreated by hydrogen reduction
Article
Licensed
Unlicensed Requires Authentication

Adsorption desulphurisation of dimethyl sulphide using nickel-based Y zeolites pretreated by hydrogen reduction

  • Xiao-Ling Yu , Yan-Nan Lu , Huan Huang , De-Zhi Yi , Li Shi and Xuan Meng EMAIL logo
Published/Copyright: December 17, 2015
Become an author with De Gruyter Brill

Abstract

A series of nickel-modified Y zeolites were prepared for the adsorption of dimethyl sulphide (DMS) in liquid hydrocarbon streams. The adsorption desulphurisation performance was investigated under ambient conditions of nickel-based adsorbents developed by the liquid-phase ion exchange (LPIE) method and the incipient wetness impregnation (IWI) method with and without the ultrasonic aid technique. It was found that the nickel-modified Y zeolite prepared by the IWI method with the ultrasonic aid technique with hydrogen reduction demonstrated a high sulphur capacity of 69.9 mg of S per g of sorbent at a break-through sulphur level of 10 μg g-1. The sorbents thus prepared were characterised by elemental analysis, XRD, TPR, H2 chemisorption, pyridine-FTIR, XPS, and SEM. The results showed that a high dispersion of metallic nickel atoms loaded on Y zeolite had an important role in determining the DMS removal capacity and the adsorption behaviour exhibited a pronounced dependence on the metal introduction method.

References

Aslam, S., Subhan, F., Yan, Z. F., Xing, W., Zeng, J. B., Liu, Y. X., Ikram, M., Rehman, S., & Ullah, R. (2015). Rapid functionalization of as-synthesized KIT-6 with nickel species occluded with template for adsorptive desulfurization. Microporous and Mesoporous Materials, 214, 54-63. DOI: 10.1016/j.micromeso.2015.04.032.10.1016/j.micromeso.2015.04.032Search in Google Scholar

Chanthaanont, P., & Sirivat, A. (2013). Effect of transition metal ion-exchanged into the zeolite Y on electrical conductivity and response of PEDOT-PSS/MY composites toward SO2. Advances in Polymer Technology, 32, 21367. DOI: 10.1002/adv.21367.10.1002/adv.21367Search in Google Scholar

Cui, H., & Turn, S. Q. (2009). Adsorption/desorption of dimethylsulfide on activated carbon modified with iron chloride. Applied Catalysis B: Environmental, 88, 25-31. DOI: 10.1016/j.apcatb.2008.09.025.10.1016/j.apcatb.2008.09.025Search in Google Scholar

Dastanian, M., & Seyedeyn-Azad, F. (2010). Desulfurization of gasoline over nanoporous nickel-loaded Y-type zeolite at ambient conditions. Industrial & Engineering Chemistry Research, 49, 11254-11259. DOI: 10.1021/ie100941s.10.1021/ie100941sSearch in Google Scholar

Florez-Rodriguez, P. P., Pamphile-Adrián, A. J., & Passos, F. B. (2014). Glycerol conversion in the presence of carbon dioxide on alumina supported nickel catalyst. Catalysis Today, 237, 38-46. DOI: 10.1016/j.cattod.2013.12.026.10.1016/j.cattod.2013.12.026Search in Google Scholar

Frey, A. S., & Hinrichsen, O. (2012). Comparison of differently synthesized Ni(Al)MCM-48 catalysts in the ethene to propene reaction. Microporous and Mesoporous Materials, 164, 164-171. DOI: 10.1016/j.micromeso.2012.07.015.10.1016/j.micromeso.2012.07.015Search in Google Scholar

Hernandez, S. P., Fino, D., & Russo, N. (2010). High performance sorbents for diesel oil desulfurization. Chemical Engineering Science, 65, 603-609. DOI: 10.1016/j.ces.2009.06. 050.Search in Google Scholar

Hou, Z. Y., Yokota, O., Tanaka, T., & Yashima, T. (2003). Characterization of Ca-promoted Ni/α-Al2O3 catalyst for CH4 reforming with CO2. Applied Catalysis A: General, 253, 381-387. DOI: 10.1016/s0926-860x(03)00543-x.10.1016/S0926-860X(03)00543-XSearch in Google Scholar

Huang, H., Yi, D. Z., Lu, Y. N., Wu, X. L., Bai, Y. P., Meng, X., & Shi, L. (2013). Study on the adsorption behavior and mechanism of dimethyl sulfide on silver modified bentonite by in situ FTIR and temperature-programmed desorption. Chemical Engineering Journal, 225, 447-455. DOI: 10.1016/j.cej.2013.04.018.10.1016/j.cej.2013.04.018Search in Google Scholar

Huang, H., Yi, D. Z., Lu, Y. N., Wu, X. L., Bai, Y. P., Meng, X., & Shi, L. (2014). Effect of valence of copper on adsorption of dimethyl sulfide from liquid hydrocarbon streams on activated bentonite. Chemical Papers, 68, 98-104. DOI: 10.2478/s11696-013-0408-7.10.2478/s11696-013-0408-7Search in Google Scholar

Kalita, P., Gupta, N. M., & Kumar, R. (2007). Synergistic role of acid sites in the Ce-enhanced activity of mesoporous Ce-Al-MCM-41 catalysts in alkylation reactions: FTIR and TPD-ammonia studies. Journal of Catalysis, 245, 338-347. DOI: 10.1016/j.jcat.2006.10.022.10.1016/j.jcat.2006.10.022Search in Google Scholar

Ko, C. H., Park, J. G., Park, J. C., Song, H. J., Han, S. S., & Kim, J. N. (2007). Surface status and size influences of nickel nanoparticles on sulfur compound adsorption. Applied Surface Science, 253, 5864-5867. DOI: 10.1016/j.apsusc.2006.12.092.10.1016/j.apsusc.2006.12.092Search in Google Scholar

Li, X. G., He, J. J., Meng, M., Yoneyam, Y., & Tsubaki, N. (2009). One-step synthesis of H-β zeolite-enwrapped Co/Al2O3 Fischer-Tropsch catalyst with high spatial selectivity. Journal of Catalysis, 265, 26-34. DOI: 10.1016/j.jcat. 2009.04.009.Search in Google Scholar

Lin, W. W., Cheng, H. Y., He, L. M., Yu, Y. C., & Zhao, F. Y. (2013). High performance of Ir-promoted Ni/TiO2 catalyst toward the selective hydrogenation of cinnamaldehyde. Journal of Catalysis, 303, 110-116. DOI: 10.1016/j.jcat.2013.03.002.10.1016/j.jcat.2013.03.002Search in Google Scholar

Ma, X. L., Velu, S., Kim, J. H., & Song, C. S. (2005). Deep desulfurization of gasoline by selective adsorption over solid adsorbents and impact of analytical methods on ppm-level sulfur quantification for fuel cell applications. Applied Cataylsis B: Environmental, 56, 137-147. DOI: 10.1016/j.apcatb.2004.08.013.10.1016/j.apcatb.2004.08.013Search in Google Scholar

Park, K. T., Lee, K. T., Shin, K. S., Yang, E. J., Hyun, B. G., Kim, J. M., Noh, J. H., Kim, M., Kong, B. K., Choi, D. H., Choi, S. J., Jang, P. G., & Jeong, H. J. (2014). Direct linkage between dimethyl sulfide production and microzooplankton grazing, resulting from prey composition change under high partial pressure of carbon dioxide conditions. Environmental Science & Technology, 48, 4750-4756. DOI: 10.1021/es403351h.10.1021/es403351hSearch in Google Scholar PubMed

Satokawa, S., Kobayashi, Y., & Fujiki, H. (2005). Adsorptive removal of dimethylsulfide and t-butylmercaptan from pipeline natural gas fuel on Ag zeolites under ambient conditions. Applied Catalysis B: Environmental, 56, 51-56. DOI: 10.1016/j.apcatb.2004.06.022.10.1016/j.apcatb.2004.06.022Search in Google Scholar

Sentorun-Shalaby, C., Saha, S. K., Ma, X. L., & Song, C. S. (2011). Mesoporous-molecular-sieve-supported nickel sorbents for adsorptive desulfurization of commercial ultra-lowsulfur diesel fuel. Applied Catalysis B: Environmental, 101, 718-726. DOI: 10.1016/j.apcatb.2010.11.014.10.1016/j.apcatb.2010.11.014Search in Google Scholar

Seshu Babu, N., Lingaiah, N., & Sai Prasad, P. S. (2012). Characterization and reactivity of Al2O3 supported Pd-Ni bimetallic catalysts for hydrodechlorination of chlorobenzene. Applied Catalysis B: Environmental, 111-112, 309-316. DOI: 10.1016/j.apcatb.2011.10.013.10.1016/j.apcatb.2011.10.013Search in Google Scholar

Subhan, F., & Liu, B. S. (2011). Acidic sites and deep desulfurization performance of nickel supported mesoporous AlMCM-41 sorbents. Chemical Engineering Journal, 178, 69-77. DOI: 10.1016/j.cej.2011.10.013.10.1016/j.cej.2011.10.013Search in Google Scholar

Subhan, F., Yan, Z. F., Peng, P., Ikram, M., & Rehman, S. (2014). The enhanced adsorption of sulfur compounds onto mesoporous Ni-AlKIT-6 sorbent, equilibrium and kinetic analysis. Journal of Hazardous Materials, 270, 82-91. DOI: 10.1016/j.jhazmat.2014.01.046.10.1016/j.jhazmat.2014.01.046Search in Google Scholar PubMed

Tang, X. L., & Shi, L. (2011). Study of the adsorption reactions of thiophene on Cu(I)/HY-Al2O3 by Fourier transform infrared and temperature-programmed desorption: Adsorption, desorption, and sorbent regeneration mechanisms. Langmuir, 27, 11999-12007. DOI: 10.1021/la2025654.10.1021/la2025654Search in Google Scholar PubMed

Tang, H., Li, Q. A., Song, Z. Y., Li, W. L., & Xing, J. M. (2011). Enhancement of desulfurization performance of nickel-based adsorbents by hydrogen reduction pretreatment. Catalysis Communications, 12, 1079-1083. DOI: 10.1016/j.catcom.2011.03.022.10.1016/j.catcom.2011.03.022Search in Google Scholar

Velu, S., Song, C. S., Engelhard, M. H., & Chin, Y. H. (2005). Adsorptive removal of organic sulfur compounds from jet fuel over K-exchanged NiY zeolites prepared by impregnation and ion exchange. Industrial & Engineering Chemistry Research, 44, 5740-5749. DOI: 10.1021/ie0488492.10.1021/ie0488492Search in Google Scholar

Wei, Z. S., Li, H. Q., He, J. C., Ye, Q. H., Huang, Q. R., & Luo, Y. W. (2013). Removal of dimethyl sulfide by the combination of non-thermal plasma and biological process. Bioresource Technology, 146, 451-456. DOI: 10.1016/j.biortech.2013.07.114.10.1016/j.biortech.2013.07.114Search in Google Scholar PubMed

Yi, D. Z., Huang, H., Meng, X., & Shi, L. (2014). Adsorption- desorption behavior and mechanism of dimethyl disulfide in liquid hydrocarbon streams on modified Y zeolites. Applied Catalysis B: Environmental, 148-149, 377-386. DOI: 10.1016/j.apcatb.2013.11.027. 10.1016/j.apcatb.2013.11.027Search in Google Scholar

Received: 2015-4-15
Revised: 2015-8-21
Accepted: 2015-8-22
Published Online: 2015-12-17
Published in Print: 2016-3-1

Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Synthesis and properties of new N,N′-phenyltetrazole podand
  2. Molecular diagnosis of Pompe disease using MALDI TOF/TOF and 1H NMR
  3. Erythritol biosynthesis from glycerol by Yarrowia lipolytica yeast: effect of osmotic pressure
  4. Cloning and expression of two genes coding endo-β-1,4-glucanases from Trichoderma asperellum PQ34 in Pichia pastoris
  5. Adsorption desulphurisation of dimethyl sulphide using nickel-based Y zeolites pretreated by hydrogen reduction
  6. Equilibrium and kinetics of wetting hydrophobic microporous membrane in sodium dodecyl benzene sulphonate and diethanolamine aqueous solutions
  7. Separation of urea adducts in the analysis of complex mineral fertilisers
  8. Cheese whey tangential filtration using tubular mineral membranes
  9. Characterization of the quality of novel rye-buckwheat ginger cakes by chemical markers and antioxidant capacity
  10. A new high-temperature inorganic–organic proton conductor: lanthanum sulfophenyl phosphate
  11. Membranes with a plasma deposited titanium isopropoxide layer
  12. Effect of fuel content on formation of zinc aluminate nano and micro-particles synthesised by high rate sol–gel autoignition of glycine-nitrates
  13. Poly(butyl cyanoacrylate) nanoparticles stabilised with poloxamer 188: particle size control and cytotoxic effects in cervical carcinoma (HeLa) cells
  14. Solubility enhancement of phenanthrene using novel chelating surfactant
  15. Physicochemical and excess properties of binary mixtures of (1-alkyl-3-methylimidazoliumchloride/bromide + ethylene glycol) at T = (288.15 to 333.15) K
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0213/html
Scroll to top button