Startseite Erythritol biosynthesis from glycerol by Yarrowia lipolytica yeast: effect of osmotic pressure
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Erythritol biosynthesis from glycerol by Yarrowia lipolytica yeast: effect of osmotic pressure

  • Ludwika Tomaszewska-Hetman EMAIL logo und Anita Rywińska
Veröffentlicht/Copyright: 17. Dezember 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The aim of this study was to examine the impact of osmotic pressure, regulated by an addition of different NaCl concentrations, on the production parameters and activity of the enzymes involved in the biosynthesis of erythritol from glycerol by Yarrowia lipolytica yeast. In the bioreactor batchcultures, strain A-3 was able to produce from 25.3 g dm-3 to 84.7 g dm-3 of erythritol from 150 g dm-3 of glycerol depending on the initial osmotic pressure. At the osmolality of 4.2 mol kg-3 or higher, a long lag-phase was observed. An enhancement of the production parameters was observed in a culture with the osmotic pressure maintained at an equal level by a step-wise addition of NaCl. The two-hour exposure of strain A-3 cells to 75 g dm-3 of NaCl resulted in decreased activity of glycerol kinase and glycerol-3-phosphate dehydrogenase by about 78 % and 25 %, respectively. The activity of transketolase and erythrose reductase remained unchanged after the salt addition. It was demonstrated that assimilation of glycerol was effective at lower osmotic pressures and that transketolase and erythrose reductase played a significant role in the erythritol formation in Y. lipolytica.

References

Adler, L., Blomberg, A., & Nilsson, A. (1985). Glycerol metabolism and osmoregulation in the salt-tolerant yeast Debaryomyces hansenii. Journal of Bacteriology, 162, 300-306.10.1128/jb.162.1.300-306.1985Suche in Google Scholar

Albertyn, J., Hohmann, S., & Prior, B. A. (1994). Characterization of the osmotic-stress response in Saccharomyces cerevisiae: Osmotic stress and glucose repression regulate glycerol-3-phosphate dehydrogenase independently. Current Genetics, 25, 12-18. DOI: 10.1007/bf00712960.10.1007/BF00712960Suche in Google Scholar

Andreishcheva, E. N., Isakova, E. P., Sidorov, N. N., Abramova, N. B., Ushakova, N. A., Shaposhnikov, G. L, Soares, M. I. M., & Zvyagilskaya, R. A. (1999). Adaptation to salt stress in a salt-tolerant strain of the yeast Yarrowia lipolytica. Biochemistry (Moscow), 64, 1061-1067.Suche in Google Scholar

Betts, G. D., Linton, P., & Betteridge, R. J. (1999). Food spoilage yeasts: Effects of pH, NaCl and temperature on growth. Food Control, 10, 27-33. DOI: 10.1016/s0956-7135(98)00151-0.10.1016/S0956-7135(98)00151-0Suche in Google Scholar

Blomberg, A., & Adler, L. (1992). Physiology of osmotolerance in fungi. Advances in Microbial Physiology, 33, 145-212. DOI: 10.1016/s0065-2911(08)60217-9.10.1016/S0065-2911(08)60217-9Suche in Google Scholar

Cho, C. H., Kim, S. Y., Noh, B. S., & Oh, D. K. (1999). Effect of osmotic pressure of salts on erythritol production by Pichia sp. Food Science and Biotechnology, 8, 73-77.Suche in Google Scholar

Kamzolova, S. V., Finogenova, T. V., & Morgunov, I. G. (2008). Microbiological production of citric and isocitric acids from sunflower oil. Food Technology and Biotechnology, 46, 51-59.Suche in Google Scholar

Kayingo, G., Kilian, S. G., & Prior, B. A. (2001). Conservation and release of osmolytes by yeast during hypo-osmotic stress. Archives of Microbiology, 177, 29-35. DOI 10.1007/s00203-001-0358-2.10.1007/s00203-001-0358-2Suche in Google Scholar

Kim, S. Y., Lee, K. H., Kim, J. H., & Oh, D. K. (1997). Erythritol production by controlling osmotic pressure in Trigonopsis variabilis. Biotechnology Letters, 19, 727-729. DOI: 10.1023/a:1018371722456.10.1023/A:1018371722456Suche in Google Scholar

Kim, S. Y., Oh, D. K., & Jung, S. R. (1999a). U.S. Patent No. 6,001,616.Washington, D.C.: U.S. Patent and Trademark Office.Suche in Google Scholar

Kim, K. A., Noh, B. S., Kim, S. Y., & Oh, D. K. (1999b). Effect of osmotic pressure of salts on growth of Torula sp. and erythritol production. Korean Journal of Applied Microbiology and Biotechnology, 27, 91-95.Suche in Google Scholar

Kim, J. W., Park, T. J., Ryu, D. D. Y., & Kim, J. Y. (2000). High cell density culture of Yarrowia lipolytica using a onestep feeding process. Biotechnology Progress, 16, 657-660. DOI: 10.1021/bp000037n.10.1021/bp000037nSuche in Google Scholar

Lee, J. K., Ha, S. J., Kim, S. Y., & Oh, D. K. (2000). Increased erythritol production in Torula sp. by Mn2+ and Cu2+. Biotechnology Letters, 22, 983-986. DOI: 10.1023/a:100567 2801826.Suche in Google Scholar

Lee, J. K., Ha, S. J., Kim, S. Y., & Oh, D. K. (2001). Increased erythritol production in Torula sp. with inositol and phytic acid. Biotechnology Letters, 23, 497-500. DOI: 10.1023/a:1010386500326.10.1023/A:1010386500326Suche in Google Scholar

Lee, J. K., Koo, B. S., & Kim, S. Y. (2002). Fumarate-mediated inhibition of erythrose reductase, a key enzyme for erythritol production by Torula corallina. Applied and Environmental Microbiology, 68, 4534-4538. DOI: 10.1128/aem.68.9.4534-4538.2002.10.1128/AEM.68.9.4534-4538.2002Suche in Google Scholar

Lee, J. K., Kim, S. Y., Ryu, Y. W., Seo, J. H., & Kim, J. H. (2003). Purification and characterization of a novel erythrose reductase from Candida magnoliae. Applied and Environmental Microbiology, 69, 3710-3718. DOI: 10.1128/aem.69. 7.3710-3718.2003.Suche in Google Scholar

Lin, S. J., Wen, C. Y., Liau, J. C., & Chu, W. S. (2001). Screening and production of erythritol by newly isolated osmophilic yeast-like fungi. Process Biochemistry, 36, 1249-1258. DOI: 10.1016/s0032-9592(01)00169-8.10.1016/S0032-9592(01)00169-8Suche in Google Scholar

Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265-275.10.1016/S0021-9258(19)52451-6Suche in Google Scholar

Lucca, M. E., Spencer, J. F. T., & de Figueroa, L. I. C. (2002). Glycerol and arabitol production by an intergeneric hybrid, PB2, obtained by protoplast fusion between Saccharomyces cerevisiae and Torulaspora delbrueckii. Applied Microbiology and Biotechnology, 59, 472-476. DOI: 10.1007/s00253-002-1025-5.10.1007/s00253-002-1025-5Suche in Google Scholar

Makri, A., Fakas, S., & Aggelis, G. (2010). Metabolic activities of biotechnological interest in Yarrowia lipolytica grown on glycerol in repeated batch cultures. Bioresource Technology, 101, 2351-2358. DOI: 10.1016/j.biortech.2009.11.024.10.1016/j.biortech.2009.11.024Suche in Google Scholar

Moon, H. J., Jeya, M., Kim, I. W., & Lee, J. K. (2010). Biotechnological production of erythritol and its applications. Applied Microbiology and Biotechnology, 86, 1017-1025. DOI: 10.1007/s00253-010-2496-4.10.1007/s00253-010-2496-4Suche in Google Scholar

Nevoigt, E., & Stahl, U. (1997). Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiology Reviews, 21, 231-241. DOI: 10.1016/s0168-6445(97)00058-2. 10.1111/j.1574-6976.1997.tb00352.xSuche in Google Scholar

Oh, D. K., Cho, C. H., Lee, J. K., & Kim, S. Y. (2001). Increased erythritol production in fed-batch cultures of Torula sp. by controlling glucose concentration. Journal of Industrial Microbiology and Biotechnology, 26, 248-252. DOI: 10.1038/sj.jim.7000122.10.1038/sj.jim.7000122Suche in Google Scholar

Park, J. B., Seo, B. C., Kim, J. R., & Park, Y. K. (1998). Production of erythritol in fed-batch cultures of Trichosporon sp. Journal of Fermentation and Bioengineering, 86, 577-580. DOI: 10.1016/s0922-338x(99)80010-5.10.1016/S0922-338X(99)80010-5Suche in Google Scholar

Park, Y. C., Lee, D. Y., Lee, D. H., Kim, H. J., Ryu, Y.W., & Seo, J. H. (2005). Proteomics and physiology of erythritolproducing strains. Journal of Chromatography B, 815, 251-260. DOI: 10.1016/j.jchromb.2004.10.065.10.1016/j.jchromb.2004.10.065Suche in Google Scholar PubMed

Park, E. H., Lee, H. Y., Ryu, Y. W., Seo, J. H., & Kim, M. D. (2011). Role of osmotic and salt stress in the expression of erythrose reductase in Candida magnoliae. Journal of Microbiology and Biotechnology, 21, 1064-1068. DOI: 10.4014/jmb.1105.05029.10.4014/jmb.1105.05029Suche in Google Scholar PubMed

Röper, H., & Goossens, J. (1993). Erythritol, a new raw material for food and non-food applications. Starch - Stärke, 45, 400-405. DOI: 10.1002/star.19930451107.10.1002/star.19930451107Suche in Google Scholar

Rymowicz, W., Rywińska, A., & Marcinkiewicz, M. (2009). High-yield production of erythritol from raw glycerol in fedbatch cultures of Yarrowia lipolytica. Biotechnol Letters, 31, 377-380. DOI: 10.1007/s10529-008-9884-1.10.1007/s10529-008-9884-1Suche in Google Scholar

Rywińska, A., Juszczyk, P.,Wojtatowicz, M., Robak, M., Lazar, Z., Tomaszewska, L., & Rymowicz, W. (2013). Glycerol as a promising substrate for Yarrowia lipolytica biological applications. Biomass and Bioenergy, 48, 148-166. DOI: 10.1016/j.biombioe.2012.11.021.10.1016/j.biombioe.2012.11.021Suche in Google Scholar

Sawada, K., Taki, A., Yamakawa, T., & Seki, M. (2009). Key role for transketolase activity in erythritol production by Trichosporonoides megachiliensis SN-G42. Journal of Bioscience and Bioengineering, 108, 385-390. DOI: 10.1016/j.jbiosc.2009.05.008.10.1016/j.jbiosc.2009.05.008Suche in Google Scholar

Sugimoto, S., & Shiio, I. (1989). Regulation of enzymes for erythrose 4-phosphate synthesis in Brevibacterium flavum. Agricultural and Biological Chemistry, 53, 2081-2987. DOI: 10.1080/00021369.1989.10869641.10.1080/00021369.1989.10869641Suche in Google Scholar

Tomaszewska, L., Rywińska, A., & Gładkowski, W. (2012). Production of erythritol and mannitol by Yarrowia lipolytica yeast in media containing glycerol. Journal of Industrial Microbiology & Biotechnology, 39, 1333-1343. DOI: 10.1007/s10295-012-1145-6.10.1007/s10295-012-1145-6Suche in Google Scholar

Tomaszewska, L., Rakicka, M., Rymowicz, W., & Rywińska, A. (2014). A comparative study on a glicerol metabolism to erythritol and citric acid in Yarrowia lipolytica yeast cells. FEMS Yeast Research, 14, 966-976. DOI: 10.1111/1567-1364.12184. 10.1111/1567-1364.12184Suche in Google Scholar

van Eck, J. H., Prior, B. A., & Brandt, E. V. (1993). The water relations of growth and polyhydroxy alcohol production by ascomycetous yeasts. Journal of General Microbiology, 139, 1047-1054. DOI: 10.1099/00221287-139-5-1047. 10.1099/00221287-139-5-1047Suche in Google Scholar

van Zyl, P. J., Prior, B. A., & Kilian, S. G. (1991). Regulation of glycerol metabolism in Zygosaccharomyces rouxii in response to osmotic stress. Applied Microbiology and Biotechnology, 36, 369-374. DOI: 10.1007/bf00208158.10.1007/BF00208158Suche in Google Scholar

Veiga-Da-Cunha, M., Firme, P., San Rom˜ao, M. V., & Santos, H. (1992). Application of 13C nuclear magnetic resonance to elucidate the unexpected biosynthesis of erythritol by Leuconostoc oenos. Applied and Environmental Microbiology, 58, 2271-2279.10.1128/aem.58.7.2271-2279.1992Suche in Google Scholar

White, H. B., & Kaplan, N. O. (1969). Purification and properties of two types of diphosphopyridine nucleotide-linked glycerol 3-phosphate dehydrogenases from chicken breast muscle and chicken liver. Journal of Biological Chemistry, 244, 6031-6039.10.1016/S0021-9258(18)63577-XSuche in Google Scholar

Yang, L. B., Zhan, X. B., Zheng, Z. Y., Wu, J. R., Gao,M. J., & Lin, C. C. (2014). A novel osmotic pressure control fed-batch fermentation strategy for improvement of erythritol production by Yarrowia lipolytica from glycerol. Bioresource Technology, 151, 120-127. DOI: 10.1016/j.biortech.2013.10.031.10.1016/j.biortech.2013.10.031Suche in Google Scholar PubMed

Received: 2014-12-1
Revised: 2015-7-20
Accepted: 2015-8-2
Published Online: 2015-12-17
Published in Print: 2016-3-1

Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Synthesis and properties of new N,N′-phenyltetrazole podand
  2. Molecular diagnosis of Pompe disease using MALDI TOF/TOF and 1H NMR
  3. Erythritol biosynthesis from glycerol by Yarrowia lipolytica yeast: effect of osmotic pressure
  4. Cloning and expression of two genes coding endo-β-1,4-glucanases from Trichoderma asperellum PQ34 in Pichia pastoris
  5. Adsorption desulphurisation of dimethyl sulphide using nickel-based Y zeolites pretreated by hydrogen reduction
  6. Equilibrium and kinetics of wetting hydrophobic microporous membrane in sodium dodecyl benzene sulphonate and diethanolamine aqueous solutions
  7. Separation of urea adducts in the analysis of complex mineral fertilisers
  8. Cheese whey tangential filtration using tubular mineral membranes
  9. Characterization of the quality of novel rye-buckwheat ginger cakes by chemical markers and antioxidant capacity
  10. A new high-temperature inorganic–organic proton conductor: lanthanum sulfophenyl phosphate
  11. Membranes with a plasma deposited titanium isopropoxide layer
  12. Effect of fuel content on formation of zinc aluminate nano and micro-particles synthesised by high rate sol–gel autoignition of glycine-nitrates
  13. Poly(butyl cyanoacrylate) nanoparticles stabilised with poloxamer 188: particle size control and cytotoxic effects in cervical carcinoma (HeLa) cells
  14. Solubility enhancement of phenanthrene using novel chelating surfactant
  15. Physicochemical and excess properties of binary mixtures of (1-alkyl-3-methylimidazoliumchloride/bromide + ethylene glycol) at T = (288.15 to 333.15) K
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0201/html
Button zum nach oben scrollen