Startseite Solubility enhancement of phenanthrene using novel chelating surfactant
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Solubility enhancement of phenanthrene using novel chelating surfactant

  • Jing-Ru Diao , Bao-Wei Zhao EMAIL logo , Feng-Feng Ma , Xuan Wang und Wen-Jie Ding
Veröffentlicht/Copyright: 17. Dezember 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A novel chelating surfactant denoted as sodium N-lauroyl ethylenediamine triacetate (N-LED3A) with both surface activity and chelation functions was studied for phenanthrene (PHE) solubilisation ability. The critical micelle concentration (CMC) of N-LED3A was measured, and the effects of the initial N-LED3A concentration, temperature, pH value and coexisting ions (Na+, Ca2+ and Cu2+) on PHE solubilisation by N-LED3A were investigated. The results demonstrated that PHE solubility was efficiently enhanced by N-LED3A, especially with N-LED3A concentrations above the CMC, which was 707 mg L-1 when measured at 25°C. The temperature influenced the apparent PHE solubility slightly and the apparent solubility of PHE was significantly affected by the pH. Na+ and Ca2+ were shown to increase the PHE solubility, while Ca2+ exhibited a better promoting ability than Na+. A suitable quantity of Cu2+ could significantly enhance the solubilisation capacities of N-LED3A at pH 5. The mechanism of the interaction between Cu2+ and N-LED3A was further confirmed by Fourier transform infrared spectroscopy (FTIR). These results reveal that Cu2+ can be chelated with N-LED3A to form a chelate complex. The results implied that N-LED3A had the potential to remediate soils contaminated by both organics and heavy metals.

References

Amaraneni, S. R. (2006). Distribution of pesticides, PAHs and heavy metals in prawn ponds near Kolleru lake wetland, India. Environment International, 32, 294-302. DOI: 10.1016/j.envint.2005.06.001.10.1016/j.envint.2005.06.001Suche in Google Scholar

An, C. J., Huang, G. H., Wei, J., & Yu, H. (2011). Effect of short-chain organic acids on the enhanced desorption of phenanthrene by rhamnolipid biosurfactant in soil- water environment. Water Research, 45, 5501-5510. DOI: 10.1016/j.watres.2011.08.011.10.1016/j.watres.2011.08.011Suche in Google Scholar

Bandala, E. R., Aguilar, F., & Torres, L. G. (2010). Surfactantenhanced soil washing for the remediation of sites contaminated with pesticides. Land Contamination & Reclamation, 18, 151-159. DOI: 10.2462/09670513.991.10.2462/09670513.991Suche in Google Scholar

Barona, A., Aranguiz, I., & Elías, A. (2001). Metal associations in soils before and after EDTA extractive decontamination: implications for the effectiveness of further cleanup procedures. Environmental Pollution, 113, 79-85. DOI: 10.1016/s0269-7491(00)00158-5.10.1016/S0269-7491(00)00158-5Suche in Google Scholar

Chang, Q. (2013). Colloid and interface chemistry for water quality control. Beijing, China: Chemical Industry Press. (in Chinese) Suche in Google Scholar

Conte, P., Agretto, A., Spaccini, R., & Piccolo, A. (2005). Soil remediation: humic acids as natural surfactants in the washings of highly contaminated soils. Environmental Pollution, 135, 515-522. DOI: 10.1016/j.envpol.2004.10.006.10.1016/j.envpol.2004.10.006Suche in Google Scholar PubMed

Dermont, G., Bergeron, M., Mercier, G., & Richer-Lafl`eche, M. (2008). Soil washing for metal removal: A review of physical/ chemical technologies and field applications. Journal of Hazardous Materials, 152, 1-31. DOI: 10.1016/j.jhazmat. 2007.10.043.Suche in Google Scholar

Ehsan, S., Prasher, S. O., & Marshall,W. D. (2006a). A washing procedure to mobilize mixed contaminants from soil: I. Polychlorinated biphenyl compounds. Journal of Environmental Quality, 35, 2146-2153. DOI: 10.2134/jeq2005.0474.10.2134/jeq2005.0474Suche in Google Scholar PubMed

Ehsan, S., Prasher, S. O., & Marshall, W. D. (2006b). A washing procedure to mobilize mixed contaminants from soil: II. Heavy metals. Journal of Environmental Quality, 35, 2084-2091. DOI: 10.2134/jeq2005.0475.10.2134/jeq2005.0475Suche in Google Scholar PubMed

Evangelou, M. W. H., Ebel, M., & Schaeffer, A. (2007). Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere, 68, 989-1003. DOI: 10.1016/j.chemosphere.2007.01. 062.Suche in Google Scholar

Finžgar, N., & Leštan, D. (2007). Multi-step leaching of Pb and Zn contaminated soils with EDTA. Chemosphere, 66, 824-832. DOI: 10.1016/j.chemosphere.2006.06.029.10.1016/j.chemosphere.2006.06.029Suche in Google Scholar PubMed

Khalladi, R., Benhabiles, O., Bentahar, F., & Moulai-Mostefa, N. (2009). Surfactant remediation of diesel fuel polluted soil. Journal of Hazardous Materials, 164, 1179-1184. DOI: 10.1016/j.jhazmat.2008.09.024.10.1016/j.jhazmat.2008.09.024Suche in Google Scholar PubMed

Kile, D. E., & Chiou, C. T. (1989). Water solubility enhancements of DDT and trichlorobenzene by some surfactants below and above the critical micelle concentration. Environmental Science & Technology, 23, 832-838. DOI: 10.1021/es00065a012.10.1021/es00065a012Suche in Google Scholar

Leštan, D., Luo, C. L., & Li, X. D. (2008). The use of chelating agents in the remediation of metal-contaminated soils: A review. Environmental Pollution, 153, 3-13. DOI: 10.1016/j.envpol.2007.11.015.10.1016/j.envpol.2007.11.015Suche in Google Scholar

Li, F., Guo, S., & Hartog, N. (2012). Electrokinetics-enhanced biodegradation of heavy polycyclic aromatic hydrocarbons in soil around iron and steel industries. Electrochimica Acta, 85, 228-234. DOI: 10.1016/j.electacta.2012.08.055.10.1016/j.electacta.2012.08.055Suche in Google Scholar

Maturi, K., Khodadoust, A. P., & Reddy, K. R. (2008). Comparison of extractants for removal of lead, zinc, and phenanthrene from manufactured gas plant field soil. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 12, 230-238. DOI: 10.1061/(asce)1090-025x(2008) 12:4(230).Suche in Google Scholar

McAllister, L. K., Van Rooij, B., & Kagan, R. A. (2010). Reorienting regulation: pollution enforcement in industrializing countries. Law & Policy, 32, 1-13. DOI: 10.1111/j.1467-9930.2009.00314.x.10.1111/j.1467-9930.2009.00314.xSuche in Google Scholar

Morkin, M., Devlin, J. F., Barker, J. F., & Butler, B. J. (2000). In situ sequential treatment of a mixed contaminant plume. Journal of Contaminant Hydrology, 45, 283-302. DOI: 10.1016/s0169-7722(00)00111-x.10.1016/S0169-7722(00)00111-XSuche in Google Scholar

Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (2001). Surfactantenhanced remediation of contaminated soil: a review. Engineering Geology, 60, 371-380. DOI: 10.1016/s0013-7952(00) 00117-4.Suche in Google Scholar

Parker, B. A., & Crudden, J. J. (1996). The commercial synthesis and characterization of novel multifunctional surfactant chelates. In J. Sanchez-Leal (Ed.), 4th World surfactant congress (Series: Special publications, Book 187, Vol. 1, p. 446-460). Cambridge, UK: Royal Society of Chemistry.Suche in Google Scholar

Pastewski, S., Hallmann, E., & Medrzycka, K. (2006). Physicochemical aspects of the application of surfactants and biosurfactants in soil remediation. Environmental Engineering Science, 23, 579-588. DOI: 10.1089/ees.2006.23.579.10.1089/ees.2006.23.579Suche in Google Scholar

Pennell, K. D., Abriola, L. M., & Weber, W. J., Jr. (1993). Surfactant-enhanced solubilization of residual dodecane in soil columns. 1. Experimental investigation. Environmental Science & Technology, 27, 2332-2340. DOI: 10.1021/es00048 a005.Suche in Google Scholar

Peters, R. W. (1999). Chelant extraction of heavy metals from contaminated soils. Journal of Hazardous Materials, 66, 151-210. DOI: 10.1016/s0304-3894(99)00010-2.10.1016/S0304-3894(99)00010-2Suche in Google Scholar

Pretsch, E., Bühlmann, P., & Badertscher, M. (2009). Structure determination of organic compounds: Tables of spectral data (4th ed.). Berlin, Germany: Springer. DOI: 10.1007/978-3-540-93810-1. Qiu, R., Zou, Z., Zhao, Z., Zhang, W., Zhang, T., Dong, H., & Wei, X. (2010). Removal of trace and major metals by soil washing with Na2EDTA and oxalate. Journal of Soils and Sediments, 10, 45-53. DOI: 10.1007/s11368-009-0083-z.10.1007/s11368-009-0083-zSuche in Google Scholar

Silverstein, R. M., Bassler, G. C., & Morrill, T. C. (1991). Spectrometric identification of organic compounds (5th ed.). New York, NY, USA: Wiley.Suche in Google Scholar

Thavamani, P., Megharaj, M., & Naidu, R. (2012). Multivariate analysis of mixed contaminants (PAHs and heavy metals) at manufactured gas plant site soils. Environmental Monitoring and Assessment, 184, 3875-3885. DOI: 10.1007/s10661-011-2230-4.10.1007/s10661-011-2230-4Suche in Google Scholar PubMed

Ullmann, A., Brauner, N., Vazana, S., Katz, Z., Goikhman, R., Seemann, B., Marom, H., & Gozin, M. (2013). New biodegradable organic-soluble chelating agents for simultaneous removal of heavy metals and organic pollutants from contaminated media. Journal of Hazardous Materials, 260, 676-688. DOI: 10.1016/j.jhazmat.2013.06.027.10.1016/j.jhazmat.2013.06.027Suche in Google Scholar PubMed

Wang, X., Zhao, J., Yao, X., & Chen, W. (2004). Synthesis and properties of N-hexadecyl ethylenediamine triacetic acid. Journal of Colloid and Interface Science, 279, 548-551. DOI: 10.1016/j.jcis.2004.06.077.10.1016/j.jcis.2004.06.077Suche in Google Scholar PubMed

Wang, J., Yang, X. S., & Li, G. S. (2009). Synthesis and application of functional surfactants. Beijing, China: Chemical Industry Press.Suche in Google Scholar

Wen, Y., & Marshall, W. D. (2011). Simultaneous mobilization of trace elements and polycyclic aromatic hydrocarbon (PHA) compounds from soil with a nonionic surfactant and [S,S]-EDDS in admixture: Metals. Journal of Hazardous Materials, 197, 361-368. DOI: 10.1016/j.jhazmat.2011.09.097.10.1016/j.jhazmat.2011.09.097Suche in Google Scholar

Wu, G., Kang, H., Zhang, X., Shao, H., Chu, L., & Ruan, C. (2010). A critical review on the bio-removal of hazardous heavy metals from contaminated soils: Issues, progress, ecoenvironmental concerns and opportunities. Journal of Hazardous Materials, 174, 1-8. DOI: 10.1016/j.jhazmat.2009.09. 113.Suche in Google Scholar

Xie, J. X., Chang, J. B., & Wang, X. M. (2001). Applications of infrared spectra in organic chemistry and pharmaceutical chemistry. Beijing, China: Science Press.Suche in Google Scholar

Yuan, Z., & VanBriesen, J. M. (2006). The formation of intermediates in EDTA and NTA biodegradation. Environmental Engineering Science, 23, 533-544. DOI: 10.1089/ees.2006.23. 533.Suche in Google Scholar

Yuan, S., Wu, X.,Wan, J., Long, H., Lu, X., Wu, X., & Chen, J. (2010). Enhanced washing of HCB and Zn from aged sediments by TX-100 and EDTA mixed solutions. Geoderma, 156, 119-125. DOI: 10.1016/j.geoderma.2010.02.006.10.1016/j.geoderma.2010.02.006Suche in Google Scholar

Zhang, W., Tsang, D. C. W., & Lo, I. M. C. (2007). Removal of Pb and MDF from contaminated soils by EDTA- and SDS-enhanced washing. Chemosphere, 66, 2025-2034. DOI: 10.1016/j.chemosphere.2006.10.017.10.1016/j.chemosphere.2006.10.017Suche in Google Scholar

Zhang, W., Tsang, D. C. W., & Lo. I. M. C. (2008). Removal of Pb by EDTA-washing in the presence of hydrophobic organic contaminants or anionic surfactant. Journal of Hazardous Materials, 155, 433-439. DOI: 10.1016/j.jhazmat.2007.11. 084.Suche in Google Scholar

Zhang, T., Wu, Y. X., Huang, X. F., Liu, J. M., Xia, B., Zhang, W. H., & Qiu, R. L. (2012). Simultaneous extraction of Cr(VI) and Cu(II) from humic acid with new synthesized EDTA derivatives. Chemosphere, 88, 730-735. DOI: 10.1016/j.chemosphere.2012.04.003.10.1016/j.chemosphere.2012.04.003Suche in Google Scholar

Zhang, T., Liu, J. M., Huang, X. F., Xia, B., Su, C. Y., Luo, G. F., Xu, Y. W., Wu, Y. X., Mao, Z. W., & Qiu, R. L. (2013). Chelant extraction of heavy metals from contaminated soils using new selective EDTA derivatives. Journal of Hazardous Materials, 262, 464-471. DOI: 10.1016/j.jhazmat.2013.08.069.10.1016/j.jhazmat.2013.08.069Suche in Google Scholar

Zhang, T.,Wei, H., Yang, X. H., Xia, B., Liu, J. M., Su, C. Y., & Qiu, R. L. (2014). Influence of the selective EDTA derivative phenyldiaminetetraacetic acid on the speciation and extraction of heavy metals from a contaminated soil. Chemosphere, 109, 1-6. DOI: 10.1016/j.chemosphere.2014.02.039.10.1016/j.chemosphere.2014.02.039Suche in Google Scholar

Zhao, G. X., & Zhu, S. Y. (2003). Principles of surfactant action. Beijing, China: China Light Industry Press.Suche in Google Scholar

Zhao, B. W. (2004). Solubilization and bioavailability enhancements of hydrophobic organic compounds by surface active agents. Ph.D. thesis, Zhejiang University, Hangzhou, China.Suche in Google Scholar

Zhao, B., & Jiang, B. (2011). Aqueous dissolution of phenanthrene from loess soil using Triton X-100 and sodium dodecylbenzene sulfonate. Asian Journal of Chemistry, 23, 3859-3864.Suche in Google Scholar

Zhong, J., Zhao, B., Zhu, K., Ma, F., & Ran, J. (2011). Solubilization kinetics of phenanthrene by surfactants and relation between weight solubilization ratio (WSR) and hydrophilelipophile balance value (HLB) of surfactants. Environmental Chemistry, 30, 1737-1742. (in Chinese) Suche in Google Scholar

Zhu, L., & Feng, S. (2003). Synergistic solubilization of polycyclic aromatic hydrocarbons by mixed anionic-nonionic surfactants. Chemosphere, 53, 459-467. DOI: 10.1016/s0045-6535(03)00541-1. 10.1016/S0045-6535(03)00541-1Suche in Google Scholar

Received: 2015-4-2
Revised: 2015-8-15
Accepted: 2015-8-17
Published Online: 2015-12-17
Published in Print: 2016-3-1

Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Synthesis and properties of new N,N′-phenyltetrazole podand
  2. Molecular diagnosis of Pompe disease using MALDI TOF/TOF and 1H NMR
  3. Erythritol biosynthesis from glycerol by Yarrowia lipolytica yeast: effect of osmotic pressure
  4. Cloning and expression of two genes coding endo-β-1,4-glucanases from Trichoderma asperellum PQ34 in Pichia pastoris
  5. Adsorption desulphurisation of dimethyl sulphide using nickel-based Y zeolites pretreated by hydrogen reduction
  6. Equilibrium and kinetics of wetting hydrophobic microporous membrane in sodium dodecyl benzene sulphonate and diethanolamine aqueous solutions
  7. Separation of urea adducts in the analysis of complex mineral fertilisers
  8. Cheese whey tangential filtration using tubular mineral membranes
  9. Characterization of the quality of novel rye-buckwheat ginger cakes by chemical markers and antioxidant capacity
  10. A new high-temperature inorganic–organic proton conductor: lanthanum sulfophenyl phosphate
  11. Membranes with a plasma deposited titanium isopropoxide layer
  12. Effect of fuel content on formation of zinc aluminate nano and micro-particles synthesised by high rate sol–gel autoignition of glycine-nitrates
  13. Poly(butyl cyanoacrylate) nanoparticles stabilised with poloxamer 188: particle size control and cytotoxic effects in cervical carcinoma (HeLa) cells
  14. Solubility enhancement of phenanthrene using novel chelating surfactant
  15. Physicochemical and excess properties of binary mixtures of (1-alkyl-3-methylimidazoliumchloride/bromide + ethylene glycol) at T = (288.15 to 333.15) K
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0199/html
Button zum nach oben scrollen