Startseite Production of endoglucanase from Trichoderma reesei RUT C30 and its application in deinking of printed office waste paper
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Production of endoglucanase from Trichoderma reesei RUT C30 and its application in deinking of printed office waste paper

  • Ayman Salih Omer Idris , Ashok Pandey und Rajeev Kumar Sukumaran EMAIL logo
Veröffentlicht/Copyright: 20. April 2016
Veröffentlichen auch Sie bei De Gruyter Brill
Biologia
Aus der Zeitschrift Biologia Band 71 Heft 3

Abstract

Media components were optimized using two-step statistical design of experiments for enhancing endoglucanase/ carboxymethyl cellulase (CMCase) production by Trichoderma reesei RUT C30. A Placket-Burman design identified cellulose concentration and pH as the most significant variables, which influenced the CMCase activity. Central composite design was employed to optimize these selected parameters. The optimal activity was obtained at cellulose concentration 19.7 g/L and pH of 7.2. Under the optimized conditions, CMCase activity was 83.63 ± 1.86 IU/mL and filter paper activity was 2.58 ± 0.2 filter paper units per mL. Enzyme productivity was higher compared to previous reports. The enzyme produced from T. reesei was concentrated and was evaluated for deinking of printed paper, which demonstrated the suitability of the enzyme for this application.

Acknowledgements

ASOI gratefully acknowledges the financial assistance provided by Department of Biotechnology (DBT), Government of India, and The World Academy of Sciences for the Advancement of Science in developing countries (TWAS) in the form of fellowship for supporting his PhD program, of which this study forms a part.

References

Bajpai P. 2014. Recycling and Deinking of Recovered Paper. Elsevier, Amsterdam.Suche in Google Scholar

Cherry J.R. & Fidantsef A.L. 2003. Directed evolution of industrial enzymes: an update. Curr. Opin. Biotechnol. 14: 438–443.10.1016/S0958-1669(03)00099-5Suche in Google Scholar

de Castro A.M., Ferreira M.C., da Cruz J.C., Rodrigues P.K., Carvalho D.F., Leite S. & Pereira J.N. 2010. High-yield endoglucanase production by Trichoderma harzianum IOC-3844 cultivated in pretreated sugarcane mill byproduct. Enzyme Res. 2010: 854526.10.4061/2010/854526Suche in Google Scholar PubMed PubMed Central

del Castillo E. 2007. Process Optimization: A Statistical Approach. Springer Science, New York.10.1007/978-0-387-71435-6Suche in Google Scholar

Durand H., Baron M., Calmels T. & Tiraby G. 1998. Classical and molecular genetics applied to Trichoderma reesei for the selection of improved cellulolytic industrial strains, pp. 135–151. In: Aubert J.P., Beguin P. & Millet J. (eds) Biochemistry and Genetics of Cellulose Degradation, FEMS Symposium No. 43. Academic Press, London.Suche in Google Scholar

El-Gogary S., Leite A., Crivellaro O., El-Dorry H. & Eveleigh D.E. 1990. Trichoderma reesei cellulose – from mutants to induction, pp. 200–211. In: Kubicek C.P., Eveleigh D.E., Esterbauer H., Steiner W., Kubicek-Pranz E.M (eds) Trichoderma reesei Cellulases. Royal Society of Chemistry, Cambridge.Suche in Google Scholar

Ghose T.K. 1987. Measurement of cellulase activities. Pure Appl. Chem. 59: 257–268.10.1351/pac198759020257Suche in Google Scholar

Gubitz G.M., Mansfield S.D. & Saddler J.N. 1998. Effectiveness of two endoglucanases from Gloeophyllum species in deinking mixed office waste paper, pp. C135–C138. In: Proceedings of The 47th International Conference on Biotechnology of the Pulp and Paper Industry, Montreal.Suche in Google Scholar

Ibarra D., Concepción Monte M., Blanco A., Martínez A.T. & Martínez M.J. 2012. Enzymatic deinking of secondary fibers: cellulases/hemicellulases versus laccase-mediator system. J. Ind. Microbiol. Biotechnol. 39: 1–9.10.1007/s10295-011-0991-ySuche in Google Scholar PubMed

Ilmen M., Saloheimo A., Onnela M.L. & Penttilä M.E. 1997. Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei. Appl. Environ. Microbiol. 63: 1298–306.10.1128/aem.63.4.1298-1306.1997Suche in Google Scholar PubMed PubMed Central

Jeffries T.W., Klungness J.H., Marguerite S. & Cropsey K.R. 1994. Comparison of enzyme enhanced with conventional deinking of xerographic and laser-printed paper. Tappi J. 77: 173–179.Suche in Google Scholar

Juhasz T., Szengyel Z., Reczey K. & Viikari L. 2005. Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources. Process Biochem. 40: 3519–3525.10.1016/j.procbio.2005.03.057Suche in Google Scholar

Jun H., Bing Y., Keying Z., Xuemei D. & Daiwen C. 2009. Strain improvement of Trichoderma reesei Rut C-30 for increased cellulase production. Indian J. Microbiol. 49: 188–195.10.1007/s12088-009-0030-0Suche in Google Scholar PubMed PubMed Central

Krishna S.H., Rao K.C., Babu J.S. & Reddy D.S. 2000. Studies on the production and application of cellulase from Trichoderma reesei QM- 9414. Bioprocess Biosyst. Eng. 22: 467–470.10.1007/s004490050760Suche in Google Scholar

Kubicek C.P., Mikus M., Schuster A., Schmoll M. & Seiboth B. 2009. Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina. Biotechnol. Biofuels 2: 19.10.1186/1754-6834-2-19Suche in Google Scholar PubMed PubMed Central

Mandels M. & Weber J. 1969. The production of cellulases. Adv. Chem. 95: 391–413.10.1021/ba-1969-0095.ch023Suche in Google Scholar

Mandels M., Weber J. & Parizek R. 1971. Enhanced cellulase production by a mutant of Trichoderma viride. Appl. Microbiol. 21: 152–154.10.1128/am.21.1.152-154.1971Suche in Google Scholar

Montenecourt B.S. & Eveleigh D.E. 1979. Selective screening methods for the isolation of high yielding cellulase mutants of Trichoderma reesei. Adv. Chem. 181: 289–301.10.1021/ba-1979-0181.ch014Suche in Google Scholar

Okada H., Tada K., Sekiya T., Yokoyama K., Takahashi A., Tohda H., Kumagai H. & Morikawa Y. 1998. Molecular characterization and heterologous expression of the gene encoding a low-molecular mass endoglucanase from Trichoderma reesei QM9414. Appl. Environ. Microbiol. 64: 555–563.10.1128/AEM.64.2.555-563.1998Suche in Google Scholar

Plackett R.L. & Burman J.P. 1946. The design of optimum multifactorial experiments. Biometrika 37: 305–325.10.1093/biomet/33.4.305Suche in Google Scholar

Prabavathy V.R., Mathivanan N., Sagadevan E., Murugesan K. & Lalithakumari D. 2006. Intra-strain protoplast fusion enhances carboxymethyl cellulase activity in Trichoderma reesei. Enzyme Microb. Technol. 38: 719–723.10.1016/j.enzmictec.2005.11.022Suche in Google Scholar

Reese E.T. & Mandels M. 1984. Rolling with the times: production and applications of Trichoderma reesei cellulases. Annu. Rep. Ferm. Proc. 7: 1–20.10.1016/B978-0-12-040307-3.50006-8Suche in Google Scholar

Ryu D.D.Y. & Mandels M. 1980. Cellulases: biosynthesis and applications. Enzyme Microb. Technol. 2: 91–102.10.1016/0141-0229(80)90063-0Suche in Google Scholar

Saloheimo M., Lehtovaara P., Penttila M., Teeri T.T., Stahlberg J., Johansson G., Pettersson G., Claeyssens M., Tomme P. & Knowles J.K. 1988. EGIII, a new endoglucanase from Trichoderma reesei: the characterization of both gene and enzyme. Gene 63: 11–22.10.1016/0378-1119(88)90541-0Suche in Google Scholar

Saloheimo M., Nakari-Setala T., Tenkanen M. & Penttila M. 1997. cDNA cloning of a Trichoderma reesei cellulase and demonstration of endoglucanase activity by expression in yeast. Eur. J. Biochem. 249: 584–591.10.1111/j.1432-1033.1997.00584.xSuche in Google Scholar PubMed

Sternberg D. 1976. Production of cellulase by Trichoderma. Biotechnology and Bioengineering Symp. 6: 35–53.Suche in Google Scholar

Virk A.P., Puri M., Gupta V., Capalash N. & Sharma P. 2013. Combined enzymatic and physical deinking methodology for efficient eco-friendly recycling of old newsprint. PLoS One 8: e72346.10.1371/journal.pone.0072346Suche in Google Scholar

Vyas S. & Lachke A. 2003. Biodeinking of mixed office waste paper by alkaline active cellulases from alkalotolerant Fusarium sp. Enzyme Microb. Technol. 33: 236–245.10.1016/S0141-0229(02)00273-9Suche in Google Scholar

Wen Z., Liao W., & Chen S. 2005. Production of cellulase by Trichoderma reesei from dairy manure. Bioresour. Technol. 96: 491–499.10.1016/j.biortech.2004.05.021Suche in Google Scholar PubMed

Zaldivar M., Velásquez J. C., Contreras I. & María Pérez L. 2001. Trichoderma aureoviride 7-121, a mutant with enhanced production of lytic enzymes: its potential use in waste cellulose degradation and/or biocontrol. Electronic J. Biotechnol. 4: a07.10.2225/vol4-issue3-fulltext-7Suche in Google Scholar

Abbreviations
ANOVA

analysis of variance

CCD

central composite design

CMC

carboxymethyl cellulose

CMCase

carboxymethyl cellulase

CSL

corn steep liquor

DAHP

diammonium hydrogenphosphate

DNS

3’5’-dinitrosalicylic acid

IU

international unit

Received: 2015-12-31
Accepted: 2016-3-19
Published Online: 2016-4-20
Published in Print: 2016-3-1

© 2016 Institute of Molecular Biology, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Cellular and Molecular Biology
  2. Improvement of uricase production from Bacillus subtilis RNZ-79 by solid state fermentation of shrimp shell wastes
  3. Cellular and Molecular Biology
  4. Antibiofilm activity of biomolecules: gene expression study of bacterial isolates from brackish and fresh water biofouled membranes
  5. Cellular and Molecular Biology
  6. In vitro evaluation of indole-3-carboxaldehyde on Vibrio parahaemolyticus biofilms
  7. Cellular and Molecular Biology
  8. Inhibitory effect of Murraya koenigii against Candida albicans virulence and biofilm development
  9. Cellular and Molecular Biology
  10. Production of endoglucanase from Trichoderma reesei RUT C30 and its application in deinking of printed office waste paper
  11. Botany
  12. Vitality of the cyanolichen Peltigera praetextata exposed around a cement plant (SW Slovakia): a comparison with green algal lichens
  13. Botany
  14. Alien wetland annual Lindernia dubia (Scrophulariaceae): the first recently mentioned localities in Slovakia and their central European context
  15. Botany
  16. The assessment of seasonal variability in emergent macrophyte communities
  17. Botany
  18. Phylogenetic relationships and Y genome origin in Kengyilia (Triticeae: Poaceae) based on single copy gene DMC1
  19. Botany
  20. Use of IRAP and REMAP markers to interpret the population structure of Linum usitatissimum from Iran
  21. Zoology
  22. Comparison of earthworm populations in arable and grassland fields in the Outer Western Carpathians, South Poland
  23. Zoology
  24. Review of the family Perlohmanniidae (Acari: Oribatida) with description of a new species from Turkey
  25. Zoology
  26. Nymphal feeding habits of Perla pallida (Plecoptera: Perlidae) from Armenia
  27. Zoology
  28. Negative effect of roosting starlings (Sturnus vulgaris) on clutch survival in the great reed warbler (Acrocephalus arundinaceus)
  29. Zoology
  30. Evaluation of distal phalanx formation and association with front hoof conformation in coldblooded horses
  31. Zoology
  32. A conceptual model of new hypothesis on the evolution of biodiversity
Heruntergeladen am 12.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/biolog-2016-0046/html
Button zum nach oben scrollen