Startseite Lebenswissenschaften In vitro evaluation of indole-3-carboxaldehyde on Vibrio parahaemolyticus biofilms
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

In vitro evaluation of indole-3-carboxaldehyde on Vibrio parahaemolyticus biofilms

  • Murugan Rajalaxmi , Vivekanandham Amsa Devi und Shunmugiah Karutha Pandian EMAIL logo
Veröffentlicht/Copyright: 20. April 2016
Veröffentlichen auch Sie bei De Gruyter Brill
Biologia
Aus der Zeitschrift Biologia Band 71 Heft 3

Abstract

This study was aimed to explore antibiofilm agents from the hitherto underexplored Palk Bay seawater bacteria. The cell free culture supernatant of the isolate Marinomonas sp. showed profound antibiofilm activity against Vibrio parahaemolyticus ATCC 17802. The active principle responsible for antibiofilm activity was identified as indole-3-carboxaldehyde (ICA) after bioassay guided purification and gas chromatography-mass spectrometry analysis. Further, in vitro antibiofilm activity of ICA was confirmed through light microscopy, confocal imaging, scanning electron microscopy and biofilm disruption studies. In addition, ICA efficiently reduced the swarming motility of the pathogen and promoted the swimming ability. Furthermore, the control of biofilms and swarming efficiency by quorum sensing pathway of the pathogen was modulated by ICA, which was substantiated using real-time analysis for opaR, cpsA, and lafA genes. This study divulged the efficacy of ICA as an antibiofilm agent against V. parahaemolyticus in vitro.

Acknowledgements

The authors thankfully acknowledge the Bioinformatics Infrastructure Facility funded by Department of Biotechnology, Government of India [Grant No. BT/BI/25/012/2012 (BIF)], the instrumentation facility provided by Department of Science and Technology, Government of India through PURSE [Grant No.SR/S9Z-23/2010/42 (G)] & FIST (Grant No.SR-FST/LSI-087/2008), and University Grants Commission, New Delhi, through SAP-DRS1 [Grant No.F.328/2011 (SAP-II)].

References

Armstrong E., Boyd K.G. & Burgess J.G. 2000. Prevention of marine biofouling using natural compounds from marine organisms. Biotechnol. Annu. Rev. 6: 221–241.10.1016/S1387-2656(00)06024-5Suche in Google Scholar

Bell R., Carmeli S. & Sar N. 1994. Vibrindole A, a metabolite of the marine bacterium Vibrio parahaemolyticus, isolated from the toxic mucus of the boxfish Ostracion cubicus.J. Nat. Prod. 57: 1587–1590.10.1021/np50113a022Suche in Google Scholar PubMed

Boles B.R. & McCarter L.L. 2002. Vibrio parahaemolyticus scrABC, a novel operon affecting swarming and capsular polysaccharide regulation. J. Bacteriol. 184: 5946–5954.10.1128/JB.184.21.5946-5954.2002Suche in Google Scholar PubMed PubMed Central

Broberg C.A., Calder T.J. & Orth K. 2011. Vibrio parahaemolyticus cell biology and pathogenicity determinants. Microbes Infect. 13: 992–1001.10.1016/j.micinf.2011.06.013Suche in Google Scholar PubMed PubMed Central

Ceccarelli D., Hasan N.A., Huq A. & Colwell R.R. 2013. Distribution and dynamics of epidemic and pandemic Vibrio parahaemolyticus virulence factors. Front. Cell Infect. Microbiol. 3: 97–105.10.3389/fcimb.2013.00097Suche in Google Scholar PubMed PubMed Central

Chowdhury G., Ghosh S., Pazhani G.P., Paul B.K., Maji D., Mukhopadhyay A.K. & Ramamurthy T. 2013. Isolation and characterization of pandemic and non pandemic strains of Vibrio parahaemolyticus from an outbreak of diarrhea in North 24 Parganas, West Bengal, India. Foodborne Pathog. Dis. 10: 338–342.10.1089/fpd.2012.1340Suche in Google Scholar PubMed

Elexon N., Yay R., Nor A.M., Kantilal H.K., Ubong A., Yoshitsugu N., Nishibuchi M. & Son R. 2014. Biofilm assessment of Vibrio parahaemolyticus from seafood using random amplified polymorphism DNA-PCR. Int. Food Res. J. 21: 59–65.Suche in Google Scholar

Enos-Berlage J.L., Guvener Z.T., Keenan C.E. & Mc Carter L.L. 2005. Genetic determinants of biofilm development of opaque and translucent Vibrio parahaemolyticus. Mol. Microbiol. 55: 1160–1182.10.1111/j.1365-2958.2004.04453.xSuche in Google Scholar PubMed

Fong J.C., Karplus K., Schoolnik G.K. & Yildiz F.H. 2006. Identification and characterization of RbmA, a novel protein required for the development of rugose colony morphology and biofilm structure in Vibrio cholerae.J.Bacteriol. 188: 1049– 1059.10.1128/JB.188.3.1049-1059.2006Suche in Google Scholar PubMed PubMed Central

Gowrishankar S., Poornima B. & Pandian S.K. 2014. Inhibitory efficacy of cyclo (L-leucyl-L-prolyl) from mangrove rhizosphere bacterium Bacillus amyloliquefaciens (MMS-50) towards cariogenic properties of Streptococcus mutans.Res. Microbiol. 165: 278–289.10.1016/j.resmic.2014.03.004Suche in Google Scholar PubMed

Hollenbeck E.C., Fong J.C., Lim J.Y., Yildiz F.H., Fuller G.G. & Cegelski L. 2014. Molecular determinants of mechanical properties of Vibrio cholerae biofilms at the air-liquid interface. Biophys. J. 107: 2245–2252.10.1016/j.bpj.2014.10.015Suche in Google Scholar PubMed PubMed Central

Kirov S.M. 2003. Bacteria that express lateral flagella enable dissection of the multifunctional roles of flagella in pathogenesis. FEMS Microbiol. Lett. 224: 151–15910.1016/S0378-1097(03)00445-2Suche in Google Scholar

Kaneko T. & Colwell R.R. 1975. Adsorption of Vibrio parahaemolyticus onto chitin and copepods. Appl. Microbiol. 29: 269–274.10.1128/am.29.2.269-274.1975Suche in Google Scholar PubMed PubMed Central

Lee J., Bansal T., Jayaraman A., Bentley W.E. & Wood T.K. 2007. Enterohemorrhagic Escherichia coli biofilms are inhibited by 7-hydroxyindole and stimulated by isatin. Appl. Environ. Microbiol. 73: 4100–4109.10.1128/AEM.00360-07Suche in Google Scholar PubMed PubMed Central

Lee J.H., Cho M.H. & Lee J. 2011. 3-Indolylacetonitrile decreases Escherichia coliO157:H7 biofilm formation and Pseudomonas aeruginosa virulence. Environ. Microbiol. 13: 62–73.10.1111/j.1462-2920.2010.02308.xSuche in Google Scholar PubMed

Lee J.H. & Lee J. 2010. Indole as an intercellular signal in microbial communities. FEMS Microbiol. Rev. 34: 426–444.10.1111/j.1574-6976.2009.00204.xSuche in Google Scholar PubMed

Mansson M., Gram L. & Larsen T.Q. 2011. Production of bioactive secondary metabolites by marine Vibrionaceae. Mar. Drugs 9: 1440–1468.10.3390/md9091440Suche in Google Scholar PubMed PubMed Central

McCarter LL. 1998. OpaR, a homolog of Vibrio harveyi LuxR, controls opacity of Vibrio parahaemolyticus. J. Bacteriol. 180: 3166–3173.10.1128/JB.180.12.3166-3173.1998Suche in Google Scholar PubMed PubMed Central

Melander R.J., Minivielle M.J. & Melander C. 2014. Controlling bacterial behavior with indole-containing natural products and derivatives. Tetrahedron 70: 6363–6372.10.1016/j.tet.2014.05.089Suche in Google Scholar PubMed PubMed Central

Minivielle M.J., Bunders C.A. & Melander C. 2013. Indole/triazole conjugates are selective inhibitors and inducers of bacterial biofilms. Medchemcomm. 4: 916–919.10.1039/c3md00064hSuche in Google Scholar

Mueller R.S., Beyhan S., Saini S.G., Yildiz F.H. & Bartlett D.H. 2009. Indole acts as an extracellular cue regulating gene expression in Vibrio cholerae. J. Bacteriol. 191: 3504–3516.10.1128/JB.01240-08Suche in Google Scholar PubMed PubMed Central

Nithya C., Devi M.G. & Pandian S.K. 2011. A novel compound from the marine bacterium Bacillus pumilus S6-15 inhibits biofilm formation in Gram-positive and Gram-negative species. Biofouling 27: 519–528.10.1080/08927014.2011.586127Suche in Google Scholar PubMed

Newton A., Kendall M., Vugia D.J., Henao O.L. & Mahon B.E. 2012. Increasing rates of vibriosis in the United States, 19962010: review of surveillance data from 2 systems. Clin. Infect. Dis. 54: 391–395.10.1093/cid/cis243Suche in Google Scholar PubMed PubMed Central

Purdy A., Rohwer F., Edwards R., Azam F. & Barlett D.H. 2005. A glimpse into the expanded genome content of Vibrio cholerae through identification of genes present in environmental strains. J. Bacteriol. 187: 2992–3001.10.1128/JB.187.9.2992-3001.2005Suche in Google Scholar PubMed PubMed Central

Qian P.Y., Li Z., Xu Y., Li Y. & Fusetani N. 2015. Mini-review: marine natural products and their synthetic analogs as antifouling compounds: 2009-2014. Biofouling 31: 101–122.10.1080/08927014.2014.997226Suche in Google Scholar PubMed

Rabin N., Zheng Y., Opoku-Temeng C., Du Y., Bonsu E. & Sintim H.Q. 2015. Agents that inhibit bacterial biofilm formation. Future Med. Chem. 7: 647–671.10.4155/fmc.15.7Suche in Google Scholar PubMed

Sahilah A.M., Laila R.A., Sallehuddin H.M., Osman H., Aminah A. & Ahmad Azuhairi A. 2014. Antibiotic resistance and molecular typing among cockle (Anadara granosa)strains of Vibrio parahaemolyticus by polymerase chain reaction (PCR)-based analysis. World J. Microbiol. Biotechnol. 30: 649–659.10.1007/s11274-013-1494-ySuche in Google Scholar PubMed

Salini R. & Pandian S.K. 2015. Interference of quorum sensing in urinary pathogen Serratia marcescens by Anethum graveolens. Pathog. Dis. 73: ftv038.10.1093/femspd/ftv038Suche in Google Scholar PubMed

Salini R., Sindhulakshmi M., Poongothai T. & Pandian S.K. 2015. Inhibition of quorum sensing mediated biofilm development and virulence in uropathogens by Hyptis suaveolens.Antonie van Leeuwenhoek 107: 1095–1106.10.1007/s10482-015-0402-xSuche in Google Scholar PubMed

Sayem S.M., Manzo E., Ciavatta L., Tramice A., Cordone A., Zanfardino A., De Felice M. & Varcamonti M. 2011. Antibiofilm activity of an exopolysaccharide from a sponge-associated strain of Bacilluslicheniformis. Microb. Cell. Fact. 10: 74–85.10.1186/1475-2859-10-74Suche in Google Scholar PubMed PubMed Central

Shaw K.S., Rosenberg Goldstein R.E., He X., Jacibs J.M., Crump B.C. & Sapkota A.R. 2014. Antimicrobial susceptibility of Vibrio vulnificus and Vibrio parahaemolyticusrecovered from recreational and commercial areas of Chesapeake Bay and Maryland Coastal Bays. PLoS One 9: e89616.10.1371/journal.pone.0089616Suche in Google Scholar PubMed PubMed Central

Su Y.C. & Liu C. 2007. Vibrio parahaemolyticus: a concern of seafood safety. Food Microbiol. 24: 549–558.10.1016/j.fm.2007.01.005Suche in Google Scholar PubMed

Veluri R., Oka I., Wagner-Dobler & Laatsch H. 2003. New indole alkaloids from the North sea bacterium Vibrio parahaemolyticus Bio249. J. Nat. Prod. 66: 1520–1523.10.1021/np030288gSuche in Google Scholar PubMed

Watnick P.I. & Kolter R. 1999. Steps in the development of a Vibrio cholerae biofilm. Mol. Microbiol. 34: 586–595.10.1046/j.1365-2958.1999.01624.xSuche in Google Scholar PubMed PubMed Central

Whitaker W.B., Richards G.P. & Boyd E.F. 2014. Loss of sigma factor RpoN increases intestinal colonization of Vibrio parahaemolyticus in an adult mouse model. Infect. Immun. 82: 544–556.10.1128/IAI.01210-13Suche in Google Scholar PubMed PubMed Central

Yeung P.S. & Boor K.J. 2004. Epidemiology pathogenesis and prevention of food borne Vibrioparahaemolyticus infections. Foodborne Pathog. Dis. 1: 74–88.10.1089/153531404323143594Suche in Google Scholar PubMed

Abbreviations
BIC

biofilm inhibitory concentration

CFCS

cell-free culture supernatant

CLSM

confocal laser scanning microscopy

DPA

2,6-di-O-palmitoyl-L-ascorbic acid

GC-MS

gas chromatography mass spectrometry

ICA

indole-3-carboxaldehyde

LB

Luria Bertani

LM

light microscopy

MIC

minimal inhibitory concentration

mLB

marine Luria Bertani

OD

optical density

QS

quorum sensing

SA

stearic acid

SEM

scanning electron microscopy

ZMB

Zobell marine broth.

Received: 2015-12-19
Accepted: 2016-3-18
Published Online: 2016-4-20
Published in Print: 2016-3-1

© 2016 Institute of Molecular Biology, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Cellular and Molecular Biology
  2. Improvement of uricase production from Bacillus subtilis RNZ-79 by solid state fermentation of shrimp shell wastes
  3. Cellular and Molecular Biology
  4. Antibiofilm activity of biomolecules: gene expression study of bacterial isolates from brackish and fresh water biofouled membranes
  5. Cellular and Molecular Biology
  6. In vitro evaluation of indole-3-carboxaldehyde on Vibrio parahaemolyticus biofilms
  7. Cellular and Molecular Biology
  8. Inhibitory effect of Murraya koenigii against Candida albicans virulence and biofilm development
  9. Cellular and Molecular Biology
  10. Production of endoglucanase from Trichoderma reesei RUT C30 and its application in deinking of printed office waste paper
  11. Botany
  12. Vitality of the cyanolichen Peltigera praetextata exposed around a cement plant (SW Slovakia): a comparison with green algal lichens
  13. Botany
  14. Alien wetland annual Lindernia dubia (Scrophulariaceae): the first recently mentioned localities in Slovakia and their central European context
  15. Botany
  16. The assessment of seasonal variability in emergent macrophyte communities
  17. Botany
  18. Phylogenetic relationships and Y genome origin in Kengyilia (Triticeae: Poaceae) based on single copy gene DMC1
  19. Botany
  20. Use of IRAP and REMAP markers to interpret the population structure of Linum usitatissimum from Iran
  21. Zoology
  22. Comparison of earthworm populations in arable and grassland fields in the Outer Western Carpathians, South Poland
  23. Zoology
  24. Review of the family Perlohmanniidae (Acari: Oribatida) with description of a new species from Turkey
  25. Zoology
  26. Nymphal feeding habits of Perla pallida (Plecoptera: Perlidae) from Armenia
  27. Zoology
  28. Negative effect of roosting starlings (Sturnus vulgaris) on clutch survival in the great reed warbler (Acrocephalus arundinaceus)
  29. Zoology
  30. Evaluation of distal phalanx formation and association with front hoof conformation in coldblooded horses
  31. Zoology
  32. A conceptual model of new hypothesis on the evolution of biodiversity
Heruntergeladen am 7.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/biolog-2016-0043/html
Button zum nach oben scrollen