Startseite Lebenswissenschaften Inhibitory effect of Murraya koenigii against Candida albicans virulence and biofilm development
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Inhibitory effect of Murraya koenigii against Candida albicans virulence and biofilm development

  • Subramanian Muthamil und Shunmugiah Karutha Pandian EMAIL logo
Veröffentlicht/Copyright: 20. April 2016
Veröffentlichen auch Sie bei De Gruyter Brill
Biologia
Aus der Zeitschrift Biologia Band 71 Heft 3

Abstract

In this study, anti-infective potential of the medicinal plant Murraya koenigii was assessed through in vitro assays and microscopic analysis. The methanolic leaf extract of M. koenigii significantly inhibited the major virulence factors of Candida albicans, such as biofilm formation, yeast-to-hyphal transition, cell surface hydrophobicity, hemolysin production and filamentation. Further purification and molecular characterization of the active lead is expected to give a novel anticandidal agent for the treatment of Candida infection.

Acknowledgements

The authors thankfully acknowledge the Bioinformatics Infrastructure Facility funded by Department of Biotechnology, Government of India [Grant No. BT/BI/25/015/2012 (BIF)], the instrumentation facility provided by Department of Science and Technology, Government of India through PURSE [Grant No. SR/S9Z-23/2010/42 (G)] & FIST (Grant No. SR-FST/LSI-087/2008), and University Grants Commission (UGC), New Delhi, through SAP-DRS1 [Grant No. F.3-28/2011 (SAP-II)]. SM thanks UGC for financial assistance in the form of a Basic Scientific Research Fellowship [Sanction No. F.25-1/2013-14 (BSR)/7-326/2011 (BSR) dt 30.05.2014].

References

Alcazar-Fuoli L., Mellado E., Garcia-Effron G., Lopez J.F., Grimalt J.O. Cuenca-Estrella J.M. & Rodriguez-Tudela J.L. 2008. Ergosterol biosynthesis pathway in Aspergillus fumigatus. Steroids 73: 339–347.10.1016/j.steroids.2007.11.005Suche in Google Scholar

Al-Fattani M.A. & Douglas L.J. 2004. Penetration of Candida biofilms by antifungal agents. Antimicrob. Agents Chemother. 48: 3291–3297.10.1128/AAC.48.9.3291-3297.2004Suche in Google Scholar

Alnuaimi A.D., O’Brien-Simpson N.M., Reynolds E.C. & McCullough M.J. 2013. Clinical isolates and laboratory reference Candida species and strains have varying abilities to form biofilms. FEMS Yeast Res. 13: 689–699.10.1111/1567-1364.12068Suche in Google Scholar

Alshami I. & Alharbi A.E. 2014. Hibiscus sabdariffa extract inhibits in vitro biofilm formation capacity of Candida albicans isolated from recurrent urinary tract infections. Asian Pac. J. Trop. Biomed. 4: 104–108.10.1016/S2221-1691(14)60217-3Suche in Google Scholar

Arif T., Bhosale J.D., Kumar N., Mandal T.K. & Bendre R.S., Lavekar G.S. & Dabur R. 2009. Natural products-antifungal agents derived from plants. J. Asian Nat. Prod. Res. 11: 621–638.10.1080/10286020902942350Suche in Google Scholar

Bakkiyaraj D., Nandhini J.R., Malathy B. & Pandian S.K. 2013. The anti-biofilm potential of pomegranate (Punica granatum L.) extract against human bacterial and fungal pathogens. Biofouling 29: 929–937.10.1080/08927014.2013.820825Suche in Google Scholar

Braga P.C., Culici M., Alfieri M. & Dal Sasso M. 2008. Thymol inhibits Candida albicans biofilm formation and mature biofilm. Int. J. Antimicrob. Agents 31: 472–477.10.1016/j.ijantimicag.2007.12.013Suche in Google Scholar

Brown D.H., Giusani A.D., Chen X. & Kumamoto C.A. 1999. Filamentous growth of Candida albicans in response to physical environmental cues and its regulation by the unique CZF1 gene. Mol. Microbiol. 34: 651–662.10.1046/j.1365-2958.1999.01619.xSuche in Google Scholar

Calderone R.A. & Fonzi W.A. 2001. Virulence factors of Candida albicans. Trends Microbiol. 9: 327–335.10.1016/S0966-842X(01)02094-7Suche in Google Scholar

Chaieb K., Zmantar T., Ksouri R., Hajlaoui H., Mahdouani K., Abdelly C. & Bakhrouf A. 2007. Antioxidant properties of the essential oil of Eugenia caryophyllata and its antifungal activity against a large number of clinical Candida species. Mycoses 50: 403–406.10.1111/j.1439-0507.2007.01391.xSuche in Google Scholar PubMed

Chandra J., Kuhn D.M., Mukherjee P.K., Hoyer L.L., McCormick T. & Ghannoum M.A. 2001. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J. Bacteriol. 183: 5385–5394.10.1128/JB.183.18.5385-5394.2001Suche in Google Scholar

Chandra J., Mukherjee P.K & Ghannoum M.A. 2012. Candida biofilms associated with CVC and medical devices. Mycoses 55: 46–57.10.1111/j.1439-0507.2011.02149.xSuche in Google Scholar

Chevalier M., Medioni E. & Precheur I. 2012. Inhibition of Candida albicans yeast-hyphal transition and biofilm formation by Solidago virgaurea water extracts. J. Med. Microbiol. 61: 1016–1022.10.1099/jmm.0.041699-0Suche in Google Scholar

Cowan M.M. 1999. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 12: 564–582.10.1128/CMR.12.4.564Suche in Google Scholar

Das K., Tiwari R. K. S. & Shrivastava D. K. 2010. Techniques for evaluation of medicinal plant products as antimicrobial agent: current methods and future trends. J. Med. Plants Res. 4: 104–111.Suche in Google Scholar

Denning D.W. 2003. Echinocandin antifungal drugs. Lancet 362: 1142–1151.10.1016/S0140-6736(03)14472-8Suche in Google Scholar

Fan D., Coughlin L.A., Neubauer M.M., Kim J., Kim M.S., Zhan X., Simms-Waldrip T.R., Xie Y., Hooper L.V. & Koh A.Y. 2015. Activation of HIF-1α and LL-37 by commensal bacteria inhibits Candida albicans colonization. Nat. Med. 21: 808–814.10.1038/nm.3871Suche in Google Scholar PubMed PubMed Central

Ghannoum M.A. & Rice L.B. 1999. Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin. Microbiol. Rev. 12: 501–517.10.1128/CMR.12.4.501Suche in Google Scholar PubMed PubMed Central

Inabo H.I. 2006. The significance of Candida infections of medical implants. Sci. Res. Essay 1: 008–010.Suche in Google Scholar

Kanafani Z.A. & Perfect J.R. 2008. Antimicrobial resistance: resistance to antifungal agents: mechanisms and clinical impact. Clin. Infect. Dis. 46: 120–128.10.1086/524071Suche in Google Scholar PubMed

Khan M.S. & Ahmad I. 2012. Biofilm inhibition by Cymbopogon citratus and Syzygium aromaticum essential oils in the strains of Candida albicans. J. Ethnopharmacol. 140: 416–423.10.1016/j.jep.2012.01.045Suche in Google Scholar PubMed

Lu Y., Su C., Wang A. & Liu. H. 2011. Hyphal development in Candida albicans requires two temporally linked changes in promoter chromatin for initiation and maintenance. PLoS Biol. 9: e1001105.10.1371/journal.pbio.1001105Suche in Google Scholar PubMed PubMed Central

Mandal S.M., Migliolo L., Franco O.L. & Ghosh A.K. 2011. Identification of an antifungal peptide from Trapa natans fruits with inhibitory effects on Candida tropicalis biofilm formation. Peptides 32: 1741–1747.10.1016/j.peptides.2011.06.020Suche in Google Scholar

Manns J.M., Mosser D.M. & Buckley H.R. 1994. Production of a hemolytic factor by Candida albicans. Infect. Immun. 62: 5154–5156.10.1128/iai.62.11.5154-5156.1994Suche in Google Scholar

Martinez J.P., Lopez-Ribot J.L., GilM.L., Sentandreu R. & Ruiz-Herrera J. 1990. Inhibition of the dimorphic transition of Candida albicans by the ornithine decarboxylase inhibitor 1,4-diaminobutanone: alterations in the glycoprotein composition of the cell wall. J. Gen. Microbiol. 136: 1937–1943.10.1099/00221287-136-10-1937Suche in Google Scholar

Mathur A., Dua V.K. & Prasad G.B.K.S. 2010. Antimicrobial activity of leaf extracts of Murraya koenigii against aerobic bacteria associated with bovine mastitis. Int. J. Chem. Environ. Pharm. Res. 1: 12–16.Suche in Google Scholar

Mayer F.L., Wilson D. & Hube B. 2013. Candida albicans pathogenicity mechanisms. Virulence 4: 119–128.10.4161/viru.22913Suche in Google Scholar

Messier C., Epifano F., Genovese S. & Grenier D. 2011. Inhibition of Candida albicans biofilm formation and yeast-hyphal transition by 4-hydroxycordoin. Phytomedicine 18: 380–383.10.1016/j.phymed.2011.01.013Suche in Google Scholar

Miller M.G. & Johnson A.D. 2002. White-opaque switching in Candida albicans is controlled by mating-type locus homeodomain proteins and allows efficient mating. Cell 110: 293–302.10.1016/S0092-8674(02)00837-1Suche in Google Scholar

Mohan S., Abdelwahab S.I., Cheah S.C., Sukari M.A., Syam S., Shamsuddin N. & Mustafa M.R. 2013. Apoptosis effect of girinimbine isolated from Murraya koenigii on lung cancer cells in vitro. Evid. Based Complement. Alternat. Med. 2013: 689865.10.1155/2013/689865Suche in Google Scholar

Morales D.K., Grahl N., Okegbe C., Dietrich L.E., Jacobs N.J. & Hogana D.A. 2013. Control of Candida albicans metabolism and biofilm formation by Pseudomonas aeruginosa phenazines. MBio 4: e00526-12.10.1128/mBio.00526-12Suche in Google Scholar

Morrell M., Fraser V.J. & Kollef M.H. 2005. Delaying the empiric treatment of candida bloodstream infection until positive blood culture results are obtained: a potential risk factor for hospital mortality. Antimicrob. Agents Chemother. 49: 3640–3645.10.1128/AAC.49.9.3640-3645.2005Suche in Google Scholar

Motsei M.L., Lindsey K.L., van Staden J. & Jager A.K. 2003. Screening of traditionally used South African plants for antifungal activity against Candida albicans. J. Ethnopharmacol. 86: 235–241.10.1016/S0378-8741(03)00082-5Suche in Google Scholar

Mukherjee P.K., Chandra J., Kuhn D.M. & Ghannoum M.A. 2003. Mechanism of fluconazole resistance in Candida albicans biofilms: phase-specific role of efflux pumps and membrane sterols. Infect. Immun. 71: 4333–4340.10.1128/IAI.71.8.4333-4340.2003Suche in Google Scholar PubMed PubMed Central

Nadeem S.G., Shafiq A., Hakim S.T., Anjum Y. & Kazm S.U. 2013. Effect of growth media, pH and temperature on yeastto-hyphal transition in Candida albicans. Open J. Med. Microbiol. 3: 185–192.10.4236/ojmm.2013.33028Suche in Google Scholar

Nithyanand P., Beema Shafreen R.M., Muthamil S. & Pandian S.K. 2015. Usnic acid inhibits biofilm formation and virulent morphological traits of Candida albicans. Microbiol.Res. 179: 20–28.10.1016/j.micres.2015.06.009Suche in Google Scholar PubMed

Odds F.C. 1988. Activity of cilofungin (LY121019) against Candida species in vitro. J. Antimicrob. Chemother. 22: 891–897.10.1093/jac/22.6.891Suche in Google Scholar PubMed

Onyewu C., Blankenship J.R., Del Poeta M. & Heitman J. 2003. Ergosterol biosynthesis inhibitors become fungicidal when combined with calcineurin inhibitors against Candida albicans, Candida glabrata, and Candida krusei. Antimicrob. Agents Chemother. 47: 956–964.10.1128/AAC.47.3.956-964.2003Suche in Google Scholar PubMed PubMed Central

Padmavathi A.R., Bakkiyaraj D., Thajuddin N. & Pandian S.K. 2015. Effect of 2,4-di-tert-butylphenol on growth and biofilm formation by an opportunistic fungus Candida albicans. Biofouling 31: 565–574.10.1080/08927014.2015.1077383Suche in Google Scholar PubMed

Pfaller M.A. & Diekema D.J. 2004. Rare and emerging opportunistic fungal pathogens: concern for resistance beyond Candida albicans and Aspergillus fumigatus. J. Clin. Microbiol. 42: 4419–4431.10.1128/JCM.42.10.4419-4431.2004Suche in Google Scholar PubMed PubMed Central

Pfaller M.A. 2012. Antifungal drug resistance: mechanisms, epidemiology, and consequences for treatment. Am. J. Med. 125 (Suppl. 1): S3–S13.10.1016/j.amjmed.2011.11.001Suche in Google Scholar PubMed

Pinto E., Vale-Silva L., Cavaleiro C. & Salgueiro L. 2009. Antifungal activity of the clove essential oil from Syzygium aromaticum on Candida, Aspergillus and dermatophyte species. J. Med. Microbiol.58: 1454–1462.10.1099/jmm.0.010538-0Suche in Google Scholar PubMed

Rahman M.M. & Gray A.I. 2005. A benzoisofuranone derivative and carbazole alkaloids from Murraya koenigii and their antimicrobial activity. Phytochemistry 66: 1601–1606.10.1016/j.phytochem.2005.05.001Suche in Google Scholar PubMed

Ramage G., Saville S.P., Thomas D.P. & Lopez-Ribot J.L. 2005. Candida biofilms: an update. Eukaryot. Cell 4: 633–638.10.1128/EC.4.4.633-638.2005Suche in Google Scholar PubMed PubMed Central

Rasmussen T.B. & Givskov M. 2006. Quorum-sensing inhibitors as anti-pathogenic drugs. Int. J. Med. Microbiol. 296: 149–161.10.1016/j.ijmm.2006.02.005Suche in Google Scholar PubMed

Raut J.S., Chauhan N.M., Shinde R.B. & Karuppayil S.M. 2013a. Inhibition of planktonic and biofilm growth of Candida albicans reveals novel antifungal activity of caffeine. J. Med. Plants Res. 7: 777–782.Suche in Google Scholar

Raut J.S., Shinde R.B., Chauhan N.M. & Karuppayil S.M. 2013b. Terpenoids of plant origin inhibit morphogenesis, adhesion, and biofilm formation by Candida albicans. Biofouling 29: 87–96.10.1080/08927014.2012.749398Suche in Google Scholar PubMed

Reena T., Prem R., Deepthi M.S., Ramachanran R.B. & Sujatha S. 2013. Comparative effect of natural commodities and commercial medicines against oral thrush causing fungal organism of Candida albicans. Sci. J. Clin. Med. 2: 75–80.10.11648/j.sjcm.20130203.13Suche in Google Scholar

Rossoni R.D., Barbosa J.O., Vilela S.F., Jorge A.O. & Junqueira J.C. 2012. Comparison of the hemolytic activity between Candida albicans and non-albicans Candida species. Braz. Oral Res. 27: 484–489.10.1590/S1806-83242013000600007Suche in Google Scholar PubMed

Salini R. & Pandian S.K. 2015. Interference of quorum sensing in urinary pathogen Serratia marcescens by Anethum graveolens. Pathog. Dis. 73: ftv038.10.1093/femspd/ftv038Suche in Google Scholar PubMed

Salini R., Sindhulakshmi M., Poongothai T. & Pandian S.K. 2015. Inhibition of quorum sensing mediated biofilm development and virulence in uropathogens by Hyptis suaveolens. Antonie Van Leeuwenhoek 107: 1095-1106.10.1007/s10482-015-0402-xSuche in Google Scholar PubMed

Sanguinetti M., Posteraro2 B. & Lass-Florl C. 2015. Antifungal drug resistance among Candida species: mechanisms and clinical impact. Mycoses 58: 2–13.10.1111/myc.12330Suche in Google Scholar PubMed

Selvamani S. & Balamurugan S. 2014. Evaluation of the antimicrobial potential of various solvent extracts of Murraya koenigii (Linn.) Spreng leaves. Int. J. Curr. Microbiol. App. Sci. 3: 74–77.Suche in Google Scholar

Shafreen R.M., Muthamil S. & Pandian S.K. 2014. Inhibition of Candida albicans virulence factors by novel levofloxacin derivatives. Appl. Microbiol. Biotechnol. 98: 6775–6785.10.1007/s00253-014-5909-ySuche in Google Scholar

Si H., Hernday A.D., Hirakawa M.P., Johnson A.D. & Bennett R.J. 2013. Candida albicans white and opaque cells undergo distinct programs of filamentous growth. PLoS Pathog. 9: e1003210.10.1371/journal.ppat.1003210Suche in Google Scholar PubMed PubMed Central

Sivasankar C., Ponmalar A., Bhaskar J.P. & Pandian S.K. 2015. Glutathione as a promising anti-hydrophobicity agent against Malassezia spp. Mycoses 58: 620–631.10.1111/myc.12370Suche in Google Scholar PubMed

Soll D.R. 2008. Candida biofilms: is adhesion sexy? Curr. Biol. 18: R717–R720.10.1016/j.cub.2008.07.014Suche in Google Scholar PubMed

Subramenium G.A., Vijayakumar K. & Pandian S.K. 2015a. Limonene inhibits streptococcal biofilm formation by targeting surface-associated virulence factors. J. Med. Microbiol. 64: 879–890.10.1099/jmm.0.000105Suche in Google Scholar PubMed

Subramenium G.A., Viszwapriya D., Iyer P.M., Balamurugan K. & Pandian S.K. 2015b. covR mediated antibiofilm activity of 3-furancarboxaldehyde increases the virulence of Group A Streptococcus. PLoS One 10: e0127210.10.1371/journal.pone.0127210Suche in Google Scholar PubMed PubMed Central

Taweechaisupapong S., Ngaonee P., Patsuk P., Pitiphat W. & Khunkitti W. 2012. Antibiofilm activity and post antifungal effect of lemongrass oil on clinical Candida dubliniensis isolate. South Afr. J. Bot. 78: 37–43.10.1016/j.sajb.2011.04.003Suche in Google Scholar

Tsang P.W., Wong A.P., Yang H.P. & Li N.F. 2013. Purpurin triggers caspase-independent apoptosis in Candida dubliniensis biofilms. PLoS One 8: e86032.10.1371/journal.pone.0086032Suche in Google Scholar PubMed PubMed Central

Vediyappan G., Dumontet V., Pelissier F. & d’Enfert C. 2013. Gymnemic acids inhibit hyphal growth and virulence in Candida albicans. PLoS One 8: e74189.10.1371/journal.pone.0074189Suche in Google Scholar PubMed PubMed Central

Yang Y.L. 2003. Virulence factors of Candida species. J. Microbiol. Immunol. Infect. 36: 223–228.Suche in Google Scholar

Abbreviations
CLSM

confocal laser scanning microscopy

MBIC

minimum biofilm inhibitory concentration

MKM

Murraya koenigii methanolic

MTP

microtiter plate

PBS

phosphate buffered saline

SDA

Sabouraud dextrose agar

SEM

scanning electron microscopy

XTT

2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide

YEPD

yeast extract peptone dextrose

Received: 2015-12-21
Accepted: 2016-3-18
Published Online: 2016-4-20
Published in Print: 2016-3-1

© 2016 Institute of Molecular Biology, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Cellular and Molecular Biology
  2. Improvement of uricase production from Bacillus subtilis RNZ-79 by solid state fermentation of shrimp shell wastes
  3. Cellular and Molecular Biology
  4. Antibiofilm activity of biomolecules: gene expression study of bacterial isolates from brackish and fresh water biofouled membranes
  5. Cellular and Molecular Biology
  6. In vitro evaluation of indole-3-carboxaldehyde on Vibrio parahaemolyticus biofilms
  7. Cellular and Molecular Biology
  8. Inhibitory effect of Murraya koenigii against Candida albicans virulence and biofilm development
  9. Cellular and Molecular Biology
  10. Production of endoglucanase from Trichoderma reesei RUT C30 and its application in deinking of printed office waste paper
  11. Botany
  12. Vitality of the cyanolichen Peltigera praetextata exposed around a cement plant (SW Slovakia): a comparison with green algal lichens
  13. Botany
  14. Alien wetland annual Lindernia dubia (Scrophulariaceae): the first recently mentioned localities in Slovakia and their central European context
  15. Botany
  16. The assessment of seasonal variability in emergent macrophyte communities
  17. Botany
  18. Phylogenetic relationships and Y genome origin in Kengyilia (Triticeae: Poaceae) based on single copy gene DMC1
  19. Botany
  20. Use of IRAP and REMAP markers to interpret the population structure of Linum usitatissimum from Iran
  21. Zoology
  22. Comparison of earthworm populations in arable and grassland fields in the Outer Western Carpathians, South Poland
  23. Zoology
  24. Review of the family Perlohmanniidae (Acari: Oribatida) with description of a new species from Turkey
  25. Zoology
  26. Nymphal feeding habits of Perla pallida (Plecoptera: Perlidae) from Armenia
  27. Zoology
  28. Negative effect of roosting starlings (Sturnus vulgaris) on clutch survival in the great reed warbler (Acrocephalus arundinaceus)
  29. Zoology
  30. Evaluation of distal phalanx formation and association with front hoof conformation in coldblooded horses
  31. Zoology
  32. A conceptual model of new hypothesis on the evolution of biodiversity
Heruntergeladen am 7.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/biolog-2016-0044/html
Button zum nach oben scrollen