Home Improvement of uricase production from Bacillus subtilis RNZ-79 by solid state fermentation of shrimp shell wastes
Article
Licensed
Unlicensed Requires Authentication

Improvement of uricase production from Bacillus subtilis RNZ-79 by solid state fermentation of shrimp shell wastes

  • Essam Kotb EMAIL logo
Published/Copyright: April 20, 2016
Become an author with De Gruyter Brill

Abstract

Among various strains of Bacillus subtilis, the strain RNZ-79 was selected for this study due to the highest uricase productivity in solid state cultures containing shrimp shell wastes, highest Vmax (0.42 μM mg−1min−1) and lowest value of Km (56 μM). Maximum productivity was observed at pH 7.6 and 45°C with an inducer concentration of 0.4% (w/v) uric acid and moisture content of 80% (v/w). An inoculum of 7% (v/v) and particle size of 354–500 μm for substrate were optimal for productivity after 54 h of fermentation. None of the tested carbon and inorganic nitrogen sources had stimulatory effect on uricase productivity. KH2PO4 at 0.12% (w/v) was the best source of phosphorus. Final uricase productivity was 5.05-fold more than the initial productivity. Enzyme purification increased the specific activity to 25-fold with a recovery of 36%. Furthermore, the purified enzyme showed a molecular mass of 33.7 kDa. Purified uricase was optimally active at pH 8.0 and 40°C and maximally stable at pH 7.0-10.0 and till 70°C for 30 min. The half-life (t1/2) at 60, 70, 80, 90 and 100°C were 87.0, 56.6, 30.0, 24.2 and 15.6 min, respectively, and the calculated midpoint temperature (Tm) was 66.85°C. Interestingly, purified enzyme exhibited a good storage stability for 3 months and none of uric acid analogues were competitive inhibitor, indicating a high specificity of uricase.

References

Abd El Fattah Y., Saeed H., Gohar Y. & El-Baz M. 2005. Improved production of Pseudomonas aeruginosa uricase by optimization of process parameters through statistical experimental designs. Process Biochem. 40:1707-1714.10.1016/j.procbio.2004.06.048Search in Google Scholar

Abdel-Fattah G. & Abo-Hamed N. 2002. Bioconversion of poultry wastes I-factors influencing the assay and productivity of crude uricase by three uricolytic filamentous fungi. New Microbiol. 25:57-64.10.1556/amicr.49.2002.4.3Search in Google Scholar

Adámek V., Králová B., Suchová M., Valentová O. & Demnerová K. 1989. Purification of microbial uricase. J. Chromatogr. 497:268-275.10.1016/0378-4347(89)80028-3Search in Google Scholar

Adámek V., Suchová M., Demnerová K., Králová B., Fořt I. & Morava P. 1990. Fermentation of Candida utilis for uricase production. J. Ind. Microbiol. 6: 85-90.10.1007/BF01576427Search in Google Scholar

Alamillo J., Cardenas J. & Pineda M. 1991. Purification and molecular properties of urate oxidase from Chlamydomonas reinhardtii. Biochim. Biophys. Acta 1076:203-208.10.1016/0167-4838(91)90267-4Search in Google Scholar

Anderson A. & Vijayakumar S. 2011. Purification and optimization of uricase enzyme produced by Pseudomonas aeruginosa. J. Exp. Sci. 2: 5-8.Search in Google Scholar

Bailey W., Scott E., Finegold S. & Baron E. 1986. Bailey and Scott's Diagnostic Microbiology. Mosby Co., USA.Search in Google Scholar

Baysal Z., Uyar F. & Aytekin C. 2003. Solid state fermentation for production of α-amylase by a thermotolerant Bacillus subtilis from hot-spring water. Process Biochem. 38: 1665–1668.10.1016/S0032-9592(02)00150-4Search in Google Scholar

Bongaerts G., Uitzetter J., Brouns R. & Vogels G. 1978. Uricase of Bacillus fastidiosus. Properties and regulation of synthesis. Biochim. Biophys. Acta 527:348-358.Search in Google Scholar

Brandenburg J., Wray L., Beier L., Jarmer H., Saxild H. & Fisher S. 2002. Roles of PucR, GlnR, and TnrA in regulating expression of the Bacillus subtilis ure P3 promoter. J. Bacteriol. 84: 6060-6064.10.1128/JB.184.21.6060-6064.2002Search in Google Scholar PubMed PubMed Central

Hassanein W., Kotb E., Awny N. & El-Zawahry Y. 2011. Fib-rinolysis and anticoagulant potential of a metallo protease produced by Bacillus subtilis K42. J. Biosci. 36: 773-779.10.1007/s12038-011-9151-9Search in Google Scholar PubMed

Hibi T., Hayashi Y., Fukada H., Itoh T., Nago T. & Nishiya Y. 2014. Intersubunit salt bridges with a sulfate anion control subunit dissociation and thermal stabilization of Bacillus sp. TB-90 urate oxidase. Biochemistry 53: 3879-3888.10.1021/bi500137bSearch in Google Scholar PubMed

Huang S. & Wu T. 2004. Modified colorimetric assay for uricase activity and a screen for mutant Bacillus subtilis uricase genes following StEP mutagenesis. Eur. J. Biochem. 271:517-523.10.1046/j.1432-1033.2003.03951.xSearch in Google Scholar PubMed

Ishikawa J., Yamashita A., Mikami Y., Hoshino Y., Kurita H., Hotta K., Shiba T. & Hattori M. 2004. The complete genomic sequence of Nocardia farcinica IFM 10152. Proc. Natl. Acad. Sci. USA 101:14925-14930.10.1073/pnas.0406410101Search in Google Scholar

Kai L., Ma X., Zhou X., Jia X., Li X. & Guo K. 2008. Purification and characterization of a thermostable uricase from Microbacterium sp. strain ZZJ4-1. World J. Microbiol. Biotech-nol. 24:401-406.10.1007/s11274-007-9489-1Search in Google Scholar

Kotb E. 2015a. Characterization of a thermostable uricase isolated from Bacillus firmus DWD-33 and its application for uric acid quantification in human serum. Protein Pept. Lett. 22:402-409.10.2174/092986652205150509213536Search in Google Scholar

Kotb E. 2015b. The biotechnological potential of subtilisinlike fibrinolytic enzyme from a newly isolated Lactobacillus plantarum KSK-II in blood destaining and antimicrobials. Biotechnol. Prog. 31: 316-324.10.1002/btpr.2033Search in Google Scholar

Koyama Y., Ichikawa T. & Nakano E. 1996. Cloning, sequence analysis, and expression in Escherichia coli of the gene encoding the Candida utilis urate oxidase (uricase). J. Biochem. 120:969-973.10.1093/oxfordjournals.jbchem.a021514Search in Google Scholar

Krishna C. & Chandrasekaran M. 1996. Banana waste as substrate for a-amylase production by Bacillus subtilis (CBTK 106) under solid-state fermentation. Appl. Microbiol. Biotechnol. 46:106-111.10.1007/s002530050790Search in Google Scholar

Laemmli U. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685.10.1038/227680a0Search in Google Scholar

Liu J., Li G., Liu H. & Zhou X. 1994. Purification and properties of uricase from Candida sp. and its application in uric acid analysis in serum. Appl. Biochem. Biotechnol. 47:57–63.10.1111/j.1749-6632.1995.tb20000.xSearch in Google Scholar

Lonsane B., Saucedo-Castaneda G., Raimbault M., Roussos S., Viniegra-Gonzalez G., Ghildyal N., Ramakrishna M. & Krish-naiah M. 1992. Scale-up strategies for solid state fermentation systems. Process Biochem. 27:259-273.10.1016/0032-9592(92)85011-PSearch in Google Scholar

Lotfy W. 2008. Production of a thermostable uricase by a novel Bacillus thermocatenulatus strain. Bioresour. Technol. 99:699-702.10.1016/j.biortech.2007.01.048Search in Google Scholar PubMed

Lowry O., Rosebrough N., Farr A. & Randall R. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265-275.10.1016/S0021-9258(19)52451-6Search in Google Scholar

Montalbini P., Aguilar M. & Ineda M. 1999. Isolation and characterization of uricase from bean leaves and its comparison with uredospore enzyme. Plant Sci. 147:139–147.10.1016/S0168-9452(99)00104-1Search in Google Scholar

Nakagawa T., Mazzali M., Kang D., Sanchez-Lozada L., Herrera-Acosta J. & Johnson R. 2006. Uric acid – a uremic toxin? Blood Purif. 24:67-70.10.1159/000089440Search in Google Scholar

Nanda P. & Babu P. 2014. Isolation, screening and production studies of uricase producing bacteria from poultry sources. Prep. Biochem. Biotechnol. 44:811-821.10.1080/10826068.2013.867875Search in Google Scholar

Pandey A., Selvakumar P., Soccol C. & Nigam P. 1999. Solid state fermentation for the production of industrial enzymes. Curr. Sci. 77:149-162.Search in Google Scholar

Pandey A., Soccol C. & Larroche C. 2007. Current Developments in Solid-State Fermentation. Springer Science/Asiatech Publishers, New York, USA/New Delhi, India.10.1007/978-0-387-75213-6Search in Google Scholar

Pfrimer P., de Moraes L., Galdino A., Salles L., Reis V., De Marco J., Prates M., Bloch C. & Torres F. 2010. Cloning, purification, and partial characterization of Bacillus subtilis urate oxidase expressed in Escherichia coli. Biomed. Biotechnol. 2010:1-6.10.1155/2010/674908Search in Google Scholar

Saeed H., Abdel-Fattah Y., Gohar Y. & Elbaz M. 2004. Purification and characterization of extracellular Pseudomonas aeruginosa urate oxidase enzyme. Pol. J. Microb. 53: 45–52.Search in Google Scholar

Schiavon O., Caliceti P., Ferruti P. & Veronese F. 2000. Therapeutic proteins: a comparison of chemical and biological properties of uricase conjugated to linear or branched poly (ethylene glycol) and poly(N-acryloylmorpholine). Farmaco 55: 264-269.10.1016/S0014-827X(00)00031-8Search in Google Scholar

Schultz C., Nygaard P. & Saxild H. 2001. Functional analysis of 14 genes that constitute the purine catabolic pathway in Bacillus subtilis and evidence for a novel regulon controlled by the PucR transcription activator. J. Bacteriol. 183:3293– 3302.10.1128/JB.183.11.3293-3302.2001Search in Google Scholar

Suzuki K., Sakasegawa, S., Misaki H. & Sugiyamac M. 2004. Molecular cloning and expression of uricase gene from Arthrobacter globiformis in Escherichia coli and characterization of the gene product. J. Biosci. Bioeng. 98:153–158.10.1016/S1389-1723(04)00259-2Search in Google Scholar

Swan D., Hale R., Dhillon N. & Leadlay P. 1987. A bacterial calcium-binding protein homologous to calmodulin. Nature 329:84-85.10.1038/329084a0Search in Google Scholar PubMed

Tanaka A., Yamamura M., Kawamoto S. & Fukui S. 1977. Production of uricase by Candida tropicalis using n-alkane as substrate. Appl. Environ. Microbiol. 34:342-346.10.1128/aem.34.4.342-346.1977Search in Google Scholar

Wallrath L. & Friedman T. 1991. Species differences in the temporal pattern of Drosophila urate oxidase gene expression are attributed to transacting regulatory changes. Proc. Natl. Acad. Sci. USA 88:5489-5493.10.1073/pnas.88.13.5489Search in Google Scholar

Werner A. & Witte C. 2011. The biochemistry of nitrogen mobilization: purine ring catabolism. Trends Plant Sci. 16: 381– 387.10.1016/j.tplants.2011.03.012Search in Google Scholar

Yamamoto K., Kojima Y., Kikuchi T., Shigyo T., Sugihara K., Takashio M. & Emi S. 1996. Nucleotide sequence of the uricase gene from Bacillus sp. TB-90. J. Biochem. 119:80-84.10.1093/oxfordjournals.jbchem.a021219Search in Google Scholar

Yazdi M., Zarrini G., Mohit E., Faramarzi M., Setayesh N., Sedighi N. & Mohseni F. 2006. Mucor hiemalis: a new source for uricase production. World J. Microbiol. Biotechnol. 22:325-330.10.1007/s11274-005-9030-3Search in Google Scholar

Yokoyama S., Ogawa A. & Obayashi A. 1988. Rapid extraction of uricase from Candida utilis cells by use of reducing agent plus surfactant. Enzyme Microb. Technol. 10:52–55.10.1016/0141-0229(88)90099-3Search in Google Scholar

Zhao Y., Zhao L., Yang G., Tao J., Bu Y. & Liao F. 2006. Characterization of a uricase from Bacillus fastidious A.T.C.C. 26904 and its application to serum uric acid assay by a patented kinetic uricase method. Biotechnol. Appl. Biochem. 45: 75-78.10.1042/BA20060028Search in Google Scholar PubMed

Received: 2016-1-11
Accepted: 2016-3-9
Published Online: 2016-4-20
Published in Print: 2016-3-1

© 2016 Institute of Molecular Biology, Slovak Academy of Sciences

Articles in the same Issue

  1. Cellular and Molecular Biology
  2. Improvement of uricase production from Bacillus subtilis RNZ-79 by solid state fermentation of shrimp shell wastes
  3. Cellular and Molecular Biology
  4. Antibiofilm activity of biomolecules: gene expression study of bacterial isolates from brackish and fresh water biofouled membranes
  5. Cellular and Molecular Biology
  6. In vitro evaluation of indole-3-carboxaldehyde on Vibrio parahaemolyticus biofilms
  7. Cellular and Molecular Biology
  8. Inhibitory effect of Murraya koenigii against Candida albicans virulence and biofilm development
  9. Cellular and Molecular Biology
  10. Production of endoglucanase from Trichoderma reesei RUT C30 and its application in deinking of printed office waste paper
  11. Botany
  12. Vitality of the cyanolichen Peltigera praetextata exposed around a cement plant (SW Slovakia): a comparison with green algal lichens
  13. Botany
  14. Alien wetland annual Lindernia dubia (Scrophulariaceae): the first recently mentioned localities in Slovakia and their central European context
  15. Botany
  16. The assessment of seasonal variability in emergent macrophyte communities
  17. Botany
  18. Phylogenetic relationships and Y genome origin in Kengyilia (Triticeae: Poaceae) based on single copy gene DMC1
  19. Botany
  20. Use of IRAP and REMAP markers to interpret the population structure of Linum usitatissimum from Iran
  21. Zoology
  22. Comparison of earthworm populations in arable and grassland fields in the Outer Western Carpathians, South Poland
  23. Zoology
  24. Review of the family Perlohmanniidae (Acari: Oribatida) with description of a new species from Turkey
  25. Zoology
  26. Nymphal feeding habits of Perla pallida (Plecoptera: Perlidae) from Armenia
  27. Zoology
  28. Negative effect of roosting starlings (Sturnus vulgaris) on clutch survival in the great reed warbler (Acrocephalus arundinaceus)
  29. Zoology
  30. Evaluation of distal phalanx formation and association with front hoof conformation in coldblooded horses
  31. Zoology
  32. A conceptual model of new hypothesis on the evolution of biodiversity
Downloaded on 26.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/biolog-2016-0040/html
Scroll to top button