Evolution of biofabrication and 3D-bioprinting technologies – from market pull to technology push
-
Andreas Blaeser
Abstract
Biofabrication is a biomedical key technology for the cultivation of living tissue structures. Here, living cells are embedded in a hydrogel matrix and joined using various processes (e.g. 3D-bioprinting) to form a multicellular construct. The so formed tissue precursor then undergoes a growth process lasting several weeks in bioreactors in order to mature into living tissue. The development of today’s biofabrication processes was originally motivated by clinical needs in the field of regenerative medicine. In this context, the focus is on the cultivation of tissue or organ parts for the regeneration of affected patients. Due to the increasing maturity of the technology and its excellent scaling potential, the range of applications has expanded to other markets, such as the pharmaceutical, cosmetics and chemical industries (e.g. in-vitro tissue models) or the field of cellular agriculture (e.g. cultured meat). Engineered living materials represent another particularly new and fast-growing field of application. The following article shows how the technology has developed from the demands of regenerative medicine (market pull) and is now pushing into completely new markets on this basis (technology push). It provides an comprehensive overview of the development of the technology and the wide range of its current fields of application.
Zusammenfassung
Die Biofabrikation ist eine biomedizinische Schlüsseltechnologie zur Kultivierung von lebenden Gewebestrukturen. Dabei werden biologische Zellen in eine Hydrogelmatrix eingebettet und mit verschiedenen Verfahren (z. B. 3D-Bioprinting) zu einem multizellulären Konstrukt zusammengefügt. Der so entstandene Gewebevorläufer durchläuft dann in Bioreaktoren einen mehrwöchigen Wachstumsprozess, um zu lebendem Gewebe heranzureifen. Die Entwicklung der heutigen Biofabrikationsverfahren wurde ursprünglich durch den klinischen Bedarf im Bereich der regenerativen Medizin motiviert. Dabei geht es um die Züchtung von Gewebe- oder Organteilen für die Regeneration von erkrankten Patienten. Aufgrund der zunehmenden Reife der Technologie und ihres hervorragenden Skalierungspotenzials hat sich das Anwendungsspektrum auf andere Märkte wie die Pharma-, Kosmetik- und Chemieindustrie (z. B. In-vitro-Gewebemodelle) oder den Bereich der zellulären Landwirtschaft (z. B. kultiviertes Fleisch) ausgeweitet. Ein weiteres, besonders neues und schnell wachsendes Anwendungsgebiet sind künstlich hergestellte lebende Materialien (Engineered Living Materials). Der folgende Beitrag zeigt, wie sich die Technologie aus den Anforderungen der regenerativen Medizin entwickelt hat (Market Pull) und auf dieser Basis in völlig neue Märkte vordringt (Technology Push). Vor diesem Hintergrund gibt der Artikel einen umfassenden Überblick über die Entwicklung der Technologie und die Vielfalt ihrer heutigen Anwendungsfelder.
About the author

Professor Andreas Blaeser is head of the Institute for BioMedical Printing Technology at the Technical University of Darmstadt (Germany). Core of his research is the investigation of novel biofabrication processes. Main focus areas are modelling and experimental research of various mechanisms and phenomena for the transport of biomaterials and their interaction with living cells. His work provides the basis for the bioproduction of bioartificial tissues, engineered living materials, or sustainable bioproducts in the field of cellular agriculture (e.g. cultured meat).
-
Research ethics: Not applicable.
-
Author contributions: The author has accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The author states no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
[1] M. E. Furth and A. Atala, “Current and future perspectives of regenerative medicine,” in Principles of Regenerative Medicine, 1st ed., A. Atala, R. Lanza, R. Nerem, and J. A. Thomson, Eds., Academic Press, 2007, pp. 2–15. https://doi.org/10.1016/b978-012369410-2.50003-6.Suche in Google Scholar
[2] K. L. McKinley, M. T. Longaker, and S. Naik, “Emerging frontiers in regenerative medicine,” Science, vol. 380, no. 6647, pp. 796–798, 2023. https://doi.org/10.1126/science.add6492.Suche in Google Scholar PubMed PubMed Central
[3] C. B. Weinberg and E. Bell, “A blood vessel model constructed from collagen and cultured vascular cells,” Science, vol. 231, no. 4736, pp. 397–400, 1986. https://doi.org/10.1126/science.2934816.Suche in Google Scholar PubMed
[4] A. Atala, S. B. Bauer, S. Soker, J. J. Yoo, and A. B. Retik, “Tissue-engineered autologous bladders for patients needing cystoplasty,” Lancet, vol. 367, no. 9518, pp. 1241–1246, 2006. https://doi.org/10.1016/s0140-6736(06)68438-9.Suche in Google Scholar
[5] N. Lindner and A. Blaeser, “Scalable biofabrication: a perspective on the current state and future potentials of process automation in 3D-bioprinting applications,” Front. Bioeng. Biotechnol., vol. 10, pp. 1–8, 2022. https://doi.org/10.3389/fbioe.2022.855042.Suche in Google Scholar PubMed PubMed Central
[6] N. L’Heureux, S. Pâquet, R. Labbé, L. Germain, and F. A. Auger, “A completely biological tissue-engineered human blood vessel,” FASEB J., vol. 12, no. 1, pp. 47–56, 1998. https://doi.org/10.1096/fsb2fasebj.12.1.47.Suche in Google Scholar
[7] L. E. Niklason, et al.., “Functional arteries grown in vitro,” Science, vol. 284, no. 5413, pp. 489–493, 1999. https://doi.org/10.1126/science.284.5413.489.Suche in Google Scholar PubMed
[8] N. L’Heureux, et al.., “Human tissue-engineered blood vessels for adult arterial revascularization,” Nat. Med., vol. 12, no. 3, pp. 361–365, 2006. https://doi.org/10.1038/nm1364.Suche in Google Scholar PubMed PubMed Central
[9] H. Pearson, “Scientists grow bladder replacement in lab,” Nature, vol. 6736, 2006, Art. no. 68438. https://doi.org/10.1038/news060403-3.Suche in Google Scholar
[10] A. Blaeser, D. F. Duarte Campos, and H. Fischer, “3D bioprinting of cell-laden hydrogels for advanced tissue engineering,” Curr. Opin. Biomed. Eng., vol. 2, pp. 58–66, 2017. https://doi.org/10.1016/j.cobme.2017.04.003.Suche in Google Scholar
[11] P. N. Bernal, et al.., “Volumetric bioprinting of complex living-tissue constructs within seconds,” Adv. Mater., vol. 31, no. 42, p. e1904209, 2019. https://doi.org/10.1002/adma.201904209.Suche in Google Scholar PubMed
[12] M. Xie, et al.., “Volumetric additive manufacturing of pristine silk-based (bio)inks,” Nat. Commun., vol. 14, no. 1, 2023, Art. no. 210. https://doi.org/10.1038/s41467-023-35807-7.Suche in Google Scholar PubMed PubMed Central
[13] X. Ma, et al.., “Deterministically patterned biomimetic human iPSC- derived hepatic model via rapid 3D bioprinting,” Proc. Natl. Acad. Sci., vol. 113, no. 8, pp. 2206–2211, 2016. https://doi.org/10.1073/pnas.1524510113.Suche in Google Scholar PubMed PubMed Central
[14] I. T. Ozbolat and M. Hospodiuk, “Current advances and future perspectives in extrusion-based bioprinting,” Biomaterials, vol. 76, pp. 321–343, 2016. https://doi.org/10.1016/j.biomaterials.2015.10.076.Suche in Google Scholar PubMed
[15] X. Cui, et al.., “Advances in extrusion 3D bioprinting: a focus on multicomponent hydrogel-based bioinks,” Adv. Healthcare Mater., vol. 1901648, pp. 1–27, 2020. https://doi.org/10.1002/adhm.201901648.Suche in Google Scholar PubMed
[16] Z. Fu, S. Naghieh, C. Xu, C. Wang, W. Sun, and X. Chen, “Printability in extrusion bioprinting,” Biofabrication, vol. 13, no. 3, p. 033001, 2021. https://doi.org/10.1088/1758-5090/abe7ab.Suche in Google Scholar PubMed
[17] A. Blaeser, et al.., “Biofabrication under fluorocarbon: a novel freeform fabrication technique to generate high aspect ratio tissue-engineered constructs,” BioRes. Open Access, vol. 2, no. 5, pp. 374–384, 2013. https://doi.org/10.1089/biores.2013.0031.Suche in Google Scholar PubMed PubMed Central
[18] A. Lee, et al.., “3D bioprinting of collagen to rebuild components of the human heart,” Science, vol. 365, no. 6452, pp. 482–487, 2019. https://doi.org/10.1126/science.aav9051.Suche in Google Scholar PubMed
[19] H.-W. Kang, S. J. Lee, I. K. Ko, C. Kengla, J. J. Yoo, and A. Atala, “A 3D bioprinting system to produce human-scale tissue constructs with structural integrity,” Nat. Biotechnol., vol. 34, no. 3, pp. 312–319, 2016. https://doi.org/10.1038/nbt.3413.Suche in Google Scholar PubMed
[20] H. Gudapati, M. Dey, and I. Ozbolat, “A comprehensive review on droplet-based bioprinting: past, present and future,” Biomaterials, vol. 102, pp. 20–42, 2016. https://doi.org/10.1016/j.biomaterials.2016.06.012.Suche in Google Scholar PubMed
[21] W. C. Wilson and T. Boland, “Cell and organ printing 1: protein and cell printers,” Anat. Rec. A, vol. 272, no. 2, pp. 491–496, 2003. https://doi.org/10.1002/ar.a.10057.Suche in Google Scholar PubMed
[22] C. Mézel, A. Souquet, L. Hallo, and F. Guillemot, “Bioprinting by laser-induced forward transfer for tissue engineering applications: jet formation modeling,” Biofabrication, vol. 2, no. 1, 2010, Art. no. 014103. https://doi.org/10.1088/1758-5082/2/1/014103.Suche in Google Scholar PubMed
[23] M. Gruene, C. Unger, L. Koch, A. Deiwick, and B. Chichkov, “Dispensing pico to nanolitre of a natural hydrogel by laser-assisted bioprinting,” Biomed. Eng. Online, vol. 10, no. 1, pp. 1–11, 2011. https://doi.org/10.1186/1475-925x-10-19.Suche in Google Scholar
[24] A. Blaeser, D. F. Duarte Campos, U. Puster, W. Richtering, M. M. Stevens, and H. Fischer, “Controlling shear stress in 3D bioprinting is a key factor to balance printing resolution and stem cell integrity,” Adv. Healthcare Mater., vol. 5, no. 3, pp. 326–333, 2016. https://doi.org/10.1002/adhm.201500677.Suche in Google Scholar PubMed
[25] U. Demirci and G. Montesano, “Single cell epitaxy by acoustic picolitre droplets,” Lab Chip, vol. 7, no. 9, pp. 1139–1145, 2007. https://doi.org/10.1039/b704965j.Suche in Google Scholar PubMed
[26] D. Banerjee, et al.., “Strategies for 3D bioprinting of spheroids: a comprehensive review,” Biomaterials, vol. 291, 2022, Art. no. 121881. https://doi.org/10.1016/j.biomaterials.2022.121881.Suche in Google Scholar PubMed
[27] B. Ayan, et al.., “Aspiration-assisted freeform bioprinting of pre-fabricated tissue spheroids in a yield-stress gel,” Commun. Phys., vol. 3, no. 1, pp. 1–14, 2020. https://doi.org/10.1038/s42005-020-00449-4.Suche in Google Scholar PubMed PubMed Central
[28] C. Norotte, F. S. Marga, L. E. Niklason, and G. Forgacs, “Scaffold-free vascular tissue engineering using bioprinting,” Biomaterials, vol. 30, no. 30, pp. 5910–5917, 2009. https://doi.org/10.1016/j.biomaterials.2009.06.034.Suche in Google Scholar PubMed PubMed Central
[29] N. I. Moldovan, N. Hibino, and K. Nakayama, “Principles of the kenzan method for robotic cell spheroid-based three-dimensional bioprinting,” Tissue Eng., Part B, vol. 23, no. 3, pp. 237–244, 2017. https://doi.org/10.1089/ten.teb.2016.0322.Suche in Google Scholar PubMed
[30] I. Matai, G. Kaur, A. Seyedsalehi, A. McClinton, and C. T. Laurencin, “Progress in 3D bioprinting technology for tissue/organ regenerative engineering,” Biomaterials, vol. 226, 2020, Art. no. 119536. https://doi.org/10.1016/j.biomaterials.2019.119536.Suche in Google Scholar PubMed
[31] N. Ashammakhi, et al.., “Advancing frontiers in bone bioprinting,” Adv. Healthcare Mater., vol. 8, no. 7, pp. 1–24, 2019. https://doi.org/10.1002/adhm.201801048.Suche in Google Scholar PubMed
[32] C. Zhang, et al.., “Cartilage 3D bioprinting for rhinoplasty using adipose-derived stem cells as seed cells: review and recent advances,” Cell Proliferation, vol. 56, no. 4, pp. 1–19, 2023. https://doi.org/10.1111/cpr.13417.Suche in Google Scholar PubMed PubMed Central
[33] E. Schätzlein and A. Blaeser, “Recent trends in bioartificial muscle engineering and their applications in cultured meat, biorobotic systems and biohybrid implants,” Nat. Commun. Biol., vol. 5, p. 737, 2022. https://doi.org/10.1038/s42003-022-03593-5.Suche in Google Scholar PubMed PubMed Central
[34] L. Xu, et al.., “Bioprinting small diameter blood vessel constructs with an endothelial and smooth muscle cell bilayer in a single step,” Biofabrication, vol. 12, no. 4, p. 045012, 2020. https://doi.org/10.1088/1758-5090/aba2b6.Suche in Google Scholar PubMed
[35] N. T. Saidy, et al.., “Biologically inspired scaffolds for heart valve tissue engineering via melt electrowriting,” Small, vol. 15, no. 24, pp. 1–15, 2019. https://doi.org/10.1002/smll.201900873.Suche in Google Scholar PubMed
[36] F. Oveissi, S. Naficy, A. Lee, D. S. Winlaw, and F. Dehghani, “Materials and manufacturing perspectives in engineering heart valves: a review,” Mater. Today Bio, vol. 5, 2020, Art. no. 100038. https://doi.org/10.1016/j.mtbio.2019.100038.Suche in Google Scholar PubMed PubMed Central
[37] S. Jana and A. Lerman, “Bioprinting a cardiac valve,” Biotechnol. Adv., vol. 33, no. 8, pp. 1503–1521, 2015. https://doi.org/10.1016/j.biotechadv.2015.07.006.Suche in Google Scholar PubMed
[38] A. D’Amore, et al.., “Heart valve scaffold fabrication: bioinspired control of macro-scale morphology, mechanics and micro-structure,” Biomaterials, vol. 150, pp. 25–37, 2018. https://doi.org/10.1016/j.biomaterials.2017.10.011.Suche in Google Scholar PubMed PubMed Central
[39] M. Samandari, A. Mostafavi, J. Quint, A. Memić, and A. Tamayol, “In situ bioprinting: intraoperative implementation of regenerative medicine,” Trends Biotechnol., vol. 40, no. 10, pp. 1229–1247, 2022. https://doi.org/10.1016/j.tibtech.2022.03.009.Suche in Google Scholar PubMed PubMed Central
[40] Y. Chen, et al.., “Noninvasive in vivo 3D bioprinting,” Sci. Adv., vol. 6, no. 23, pp. 1–10, 2020. https://doi.org/10.1126/sciadv.aba7406.Suche in Google Scholar PubMed PubMed Central
[41] M. Xie, et al.., “In situ 3D bioprinting with bioconcrete bioink,” Nat. Commun., vol. 13, no. 1, 2022, Art. no. 3597. https://doi.org/10.1038/s41467-022-30997-y.Suche in Google Scholar PubMed PubMed Central
[42] N. Noor, A. Shapira, R. Edri, I. Gal, L. Wertheim, and T. Dvir, “3D printing of personalized thick and perfusable cardiac patches and hearts,” Adv. Sci., vol. 6, no. 11, 2019, Art. no. 1900344. https://doi.org/10.1002/advs.201900344.Suche in Google Scholar PubMed PubMed Central
[43] T. U. Esser, et al.., “Direct 3D-bioprinting of hiPSC-derived cardiomyocytes to generate functional cardiac tissues,” Adv. Mater., vol. 35, no. 52, pp. 1–11, 2023. https://doi.org/10.1002/adma.202305911.Suche in Google Scholar PubMed
[44] B. Maher, “Tissue engineering: how to build a heart,” Nature, vol. 499, no. 7456, pp. 20–22, 2013. https://doi.org/10.1038/499020a.Suche in Google Scholar PubMed
[45] J. Wu, H. T. Greely, R. Jaenisch, H. Nakauchi, J. Rossant, and J. C. I. Belmonte, “Stem cells and interspecies chimaeras,” Nature, vol. 540, no. 7631, pp. 51–59, 2016. https://doi.org/10.1038/nature20573.Suche in Google Scholar PubMed
[46] D. Zielinska, et al.., “Combining bioengineered human skin with bioprinted cartilage for ear reconstruction,” Sci. Adv., vol. 9, no. 40, 2023, Art. no. eadh1890. https://doi.org/10.1126/sciadv.adh1890.Suche in Google Scholar PubMed PubMed Central
[47] A. Fritschen and A. Blaeser, “Biosynthetic, biomimetic, and self-assembled vascularized Organ-on-a-Chip systems,” Biomaterials, vol. 268, 2020, Art. no. 120556. https://doi.org/10.1016/j.biomaterials.2020.120556.Suche in Google Scholar PubMed
[48] X. Liu, et al.., “3D liver tissue model with branched vascular networks by multimaterial bioprinting,” Adv. Healthcare Mater., vol. 10, no. 23, pp. 1–14, 2021. https://doi.org/10.1002/adhm.202101405.Suche in Google Scholar PubMed
[49] J. U. Lind, et al.., “Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing,” Nat. Mater., vol. 16, no. 3, pp. 303–308, 2017. https://doi.org/10.1038/nmat4782.Suche in Google Scholar PubMed PubMed Central
[50] N. Y. C. Lin, et al.., “Renal reabsorption in 3D vascularized proximal tubule models,” Proc. Natl. Acad. Sci. U. S. A., vol. 116, no. 12, pp. 5399–5404, 2019. https://doi.org/10.1073/pnas.1815208116.Suche in Google Scholar PubMed PubMed Central
[51] G. Pagnotta, S. Kalia, L. Di Lisa, A. F. G. Cicero, C. Borghi, and M. L. Focarete, “Progress towards 3D bioprinting of tissue models for advanced drug screening: in vitro evaluation of drug toxicity and drug metabolism,” Bioprinting, vol. 27, 2022, Art. no. e00218. https://doi.org/10.1016/j.bprint.2022.e00218.Suche in Google Scholar
[52] F. De Lorenzi, et al.., “Engineering mesoscopic 3D tumor models with a self-organizing vascularized matrix,” Adv. Mater., vol. 36, no. 5, pp. 1–19, 2024. https://doi.org/10.1002/adma.202303196.Suche in Google Scholar PubMed
[53] P. J. H. Zushin, S. Mukherjee, and J. C. Wu, “FDA Modernization Act 2.0: transitioning beyond animal models with human cells, organoids, and AI/ML-based approaches,” J. Clin. Invest., vol. 133, no. 21, pp. 1–4, 2023. https://doi.org/10.1172/jci175824.Suche in Google Scholar PubMed PubMed Central
[54] D. E. Ingber, “Human organs-on-chips for disease modelling, drug development and personalized medicine,” Nat. Rev., vol. 23, pp. 467–491, 2022. https://doi.org/10.1038/s41576-022-00466-9.Suche in Google Scholar PubMed PubMed Central
[55] D. Huh, G. A. Hamilton, and D. E. Ingber, “From 3D cell culture to organs-on-chips,” Trends Cell Biol., vol. 21, no. 12, pp. 745–754, 2011. https://doi.org/10.1016/j.tcb.2011.09.005.Suche in Google Scholar PubMed PubMed Central
[56] G. A. Carbajal-Gamboa, A. E. Ostolaza-Saz, D. A. Dueñas-Parapar, J. L. Casanova, and H. M. Gonzales-Molfino, “Bioprinting as a food production technique: conceptual and ethical aspects, advantages and disadvantages, and applications,” Sci. Agropecu., vol. 13, no. 3, pp. 231–238, 2022. https://doi.org/10.17268/sci.agropecu.2022.021.Suche in Google Scholar
[57] F. B. Albrecht, T. Ahlfeld, A. Klatt, S. Heine, M. Gelinsky, and P. J. Kluger, “Biofabrication’s contribution to the evolution of cultured meat,” Adv. Healthcare Mater., vol. 2304058, pp. 1–21, 2024. https://doi.org/10.1002/adhm.202304058.Suche in Google Scholar PubMed PubMed Central
[58] K. Jakab, et al.., “Non-medical applications of tissue engineering: biofabrication of a leather-like material,” Mater. Today Sustain., vol. 5, 2019, Art. no. 100018. https://doi.org/10.1016/j.mtsust.2019.100018.Suche in Google Scholar
[59] I. Ianovici, Y. Zagury, I. Redenski, N. Lavon, and S. Levenberg, “3D-printable plant protein-enriched scaffolds for cultivated meat development,” Biomaterials, vol. 284, 2022, Art. no. 121487. https://doi.org/10.1016/j.biomaterials.2022.121487.Suche in Google Scholar PubMed
[60] D. H. Kang, et al.., “Engineered whole cut meat-like tissue by the assembly of cell fibers using tendon-gel integrated bioprinting,” Nat. Commun., vol. 12, no. 1, 2021, Art. no. 5059. https://doi.org/10.1038/s41467-021-25236-9.Suche in Google Scholar PubMed PubMed Central
[61] F. Usai, et al.., “Design and biofabrication of bacterial living materials with robust and multiplexed biosensing capabilities,” Mater. Today Bio, vol. 18, 2023, Art. no. 100526. https://doi.org/10.1016/j.mtbio.2022.100526.Suche in Google Scholar PubMed PubMed Central
[62] J. Müller, A. C. Jäkel, J. Richter, M. Eder, E. Falgenhauer, and F. C. Simmel, “Bacterial growth, communication, and guided chemotaxis in 3D-bioprinted hydrogel environments,” ACS Appl. Mater. Interfaces, vol. 14, no. 14, pp. 15871–15880, 2022. https://doi.org/10.1021/acsami.1c20836.Suche in Google Scholar PubMed PubMed Central
[63] L. K. Rivera-Tarazona, Z. T. Campbell, and T. H. Ware, “Stimuli-responsive engineered living materials,” Soft Matter, vol. 17, no. 4, pp. 785–809, 2021. https://doi.org/10.1039/d0sm01905d.Suche in Google Scholar PubMed
[64] H. Yuk, T. Zhang, G. A. Parada, X. Liu, and X. Zhao, “Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures,” Nat. Commun., vol. 7, pp. 1–11, 2016. https://doi.org/10.1038/ncomms12028.Suche in Google Scholar PubMed PubMed Central
[65] S. Bhusari, J. Kim, K. Polizzi, S. Sankaran, and A. del Campo, “Encapsulation of bacteria in bilayer Pluronic thin film hydrogels: a safe format for engineered living materials,” Biomater. Adv., vol. 145, 2023, Art. no. 213240. https://doi.org/10.1016/j.bioadv.2022.213240.Suche in Google Scholar PubMed
[66] C. Jerez-Longres, et al.., “Engineering a material-genetic interface as safety switch for embedded therapeutic cells,” Biomater. Adv., vol. 150, 2023, Art. no. 213422. https://doi.org/10.1016/j.bioadv.2023.213422.Suche in Google Scholar PubMed
[67] S. S. Srinivasa and H. M. Herr, “A cutaneous mechanoneural interface for neuroprosthetic feedback,” Nat. Biomed. Eng., vol. 6, pp. 731–740, 2021. https://doi.org/10.1038/s41551-020-00669-7.Suche in Google Scholar PubMed
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Survey
- Biological engineering – an engineering discipline crucial to the future of our civilization
- Forum
- New biological solutions to the many problems of our time
- Survey
- Biological engineering as a driver of innovation: implications for the economy
- Advancing vertical farming with automation for sustainable food production
- Harnessing microalgae: from biology to innovation in sustainable solutions
- Generation of molecular hydrogen (H2) by microalgae and their biocatalysts
- Biocatalytic approaches for plastic recycling
- Engineered living materials: pushing the boundaries of materials sciences through biological engineering
- The fabrication-assembly challenge in tissue engineering
- Evolution of biofabrication and 3D-bioprinting technologies – from market pull to technology push
- A bio-engineering approach to generate bioinspired (spider) silk protein-based materials
- RNA aptamers: promising tools in synthetic biology
- Automated handling of biological objects with a flexible gripper for biodiversity research
- Building with renewable materials
- Growing new types of building materials: mycelium-based composite materials
- Façade greening – from science to school
Artikel in diesem Heft
- Frontmatter
- Survey
- Biological engineering – an engineering discipline crucial to the future of our civilization
- Forum
- New biological solutions to the many problems of our time
- Survey
- Biological engineering as a driver of innovation: implications for the economy
- Advancing vertical farming with automation for sustainable food production
- Harnessing microalgae: from biology to innovation in sustainable solutions
- Generation of molecular hydrogen (H2) by microalgae and their biocatalysts
- Biocatalytic approaches for plastic recycling
- Engineered living materials: pushing the boundaries of materials sciences through biological engineering
- The fabrication-assembly challenge in tissue engineering
- Evolution of biofabrication and 3D-bioprinting technologies – from market pull to technology push
- A bio-engineering approach to generate bioinspired (spider) silk protein-based materials
- RNA aptamers: promising tools in synthetic biology
- Automated handling of biological objects with a flexible gripper for biodiversity research
- Building with renewable materials
- Growing new types of building materials: mycelium-based composite materials
- Façade greening – from science to school