Generation of molecular hydrogen (H2) by microalgae and their biocatalysts
-
Anja Hemschemeier
and Thomas Happe
Abstract
Molecular hydrogen (H2) is a potent fuel and required for many industrial synthetic processes. To date, its large-scale production is highly energy-intensive and mostly based on fossil fuels. Biological H2 generation is widespread in nature and could alleviate many of the impacts associated with current H2 technologies. Several species of microalgae and cyanobacteria can produce H2 employing the process of photosynthesis, that is, they use light as the energy-source, and obtain the required electrons from water. Large-scale H2 production by algae requires specialized fermenters whose design needs expertise both in biology and process engineering. Cell-free or electrode systems employing the natural biocatalysts could be employed alternatively. Because H2 converting biocatalysts are specialized proteins mostly sensitive towards air, the implementation of cell-free systems on a large scale requires manufacturing and processing pipelines different from existing enzyme technologies.
Zusammenfassung
Molekularer Wasserstoff (H2) ist ein energiereicher Brennstoff, der für viele industrielle Syntheseprozesse benötigt wird. Seine großtechnische Herstellung ist bisher sehr energieaufwändig und basiert meist auf fossilen Brennstoffen. Die biologische H2-Produktion ist in der Natur weit verbreitet und könnte viele der mit den derzeitigen H2-Technologien verbundenen Auswirkungen mildern. Verschiedene Arten von Mikroalgen und Cyanobakterien können Wasserstoff durch Photosynthese erzeugen, d. h. sie nutzen Licht als Energiequelle und gewinnen die benötigten Elektronen aus Wasser. Für die großtechnische Wasserstoffproduktion durch Algen werden spezielle Fermenter benötigt, deren Auslegung sowohl biologisches als auch verfahrenstechnisches Know-how erfordert. Alternativ können zellfreie oder elektrodenbasierte Systeme eingesetzt werden, die natürliche Biokatalysatoren nutzen. Da es sich bei den Biokatalysatoren für die H2-Umwandlung um spezialisierte Proteine handelt, die in der Regel Sauerstoff-empfindlich sind, erfordert die großtechnische Umsetzung zellfreier Systeme Herstellungs- und Aufarbeitungsverfahren, die sich von den bestehenden Enzymtechnologien unterscheiden.
Funding source: Deutsche Forschungsgemeinschaft
Award Identifier / Grant number: RTG 2341
Funding source: VolkswagenStiftung
Award Identifier / Grant number: Az 98621
Funding source: Deutsche Forschungsgemeinschaft
Award Identifier / Grant number: HA 2555/10-1
About the authors

PD Dr. Anja Hemschemeier is associate professor and junior research group leader in the Photobiotechnology group at Ruhr University Bochum. She works on hypoxic acclimation of microalgae and on the elucidation of cellular stress responses and their regulation at the molecular level.

Prof. Dr. Thomas Happe is professor and head of the Photobiotechnology group at Ruhr University Bochum. He studies the catalytic principles of hydrogenases and their redox partners. Building on this, he also works on optimizing these biocatalysts and on the design of artificial hydrogenases.
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. Both authors wrote and edited the manuscript.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: This research work was supported by Deutsche Forschungsgemeinschaft RTG 2341; VolkswagenStiftung Az 98621; Deutsche Forschungsgemeinschaft HA 2555/10-1.
-
Data availability: Not applicable.
References
[1] K. Gutekunst and R. Schulz, “CHAPTER 4 the physiology of the bidirectional NiFe-hydrogenase in cyanobacteria and the role of hydrogen throughout the evolution of life,” in Microalgal Hydrogen Production: Achievements and Perspectives, M. Seibert and G. Torzillo, Eds., London, UK, The Royal Society of Chemistry, 2018, pp. 107–138.10.1039/9781849737128-00107Search in Google Scholar
[2] T. D. Mand and W. W. Metcalf, “Energy conservation and hydrogenase function in methanogenic archaea, in particular the genus Methanosarcina,” Microbiol. Mol. Biol. Rev., vol. 83, no. 4, pp. e00020-e00119, 2019. https://doi.org/10.1128/MMBR.00020-19.Search in Google Scholar PubMed PubMed Central
[3] E. Boyd, G. Schut, M. Adams, and J. Peters, “Hydrogen metabolism and the evolution of biological respiration,” Microbe Mag., vol. 9, no. 9, pp. 361–367, 2014. https://doi.org/10.1128/microbe.9.361.1.Search in Google Scholar
[4] S. L. Benoit, R. J. Maier, R. G. Sawers, and C. Greening, “Molecular hydrogen metabolism: a widespread trait of pathogenic bacteria and protists,” Microbiol. Mol. Biol. Rev., vol. 84, no. 1, pp. e00092-19, 2020. https://doi.org/10.1128/MMBR.00092-19.Search in Google Scholar PubMed PubMed Central
[5] M. C. Posewitz, “CHAPTER 7 Metabolism and genetics of algal hydrogen production,” in Microalgal Hydrogen Production: Achievements and Perspectives, M. Seibert and G. Torzillo, Eds., London, UK, The Royal Society of Chemistry, 2018, pp. 167–188.10.1039/9781849737128-00167Search in Google Scholar
[6] A. Hemschemeier, M. C. Posewitz, and T. Happe, “Chapter 10 – Hydrogenases and hydrogen production,” in The Chlamydomonas Sourcebook, 3rd ed A. R. Grossman and F.-A. Wollman, Eds., London, Academic Press, 2023, pp. 343–367.10.1016/B978-0-12-821430-5.00008-0Search in Google Scholar
[7] V. J. Thannickal, “Oxygen in the evolution of complex life and the price we pay,” Am. J. Respir. Cell Mol. Biol., vol. 40, no. 5, pp. 507–510, 2009. https://doi.org/10.1165/rcmb.2008-0360PS.Search in Google Scholar PubMed PubMed Central
[8] A. Stirbet, D. Lazár, Y. Guo, and G. Govindjee, “Photosynthesis: basics, history and modelling,” Ann. Bot., vol. 126, no. 4, pp. 511–537, 2020. https://doi.org/10.1093/aob/mcz171.Search in Google Scholar PubMed PubMed Central
[9] T. Roach and A. Krieger-Liszkay, “Regulation of photosynthetic electron transport and photoinhibition,” Curr. Protein Pept. Sci., vol. 15, no. 4, pp. 351–362, 2014. https://doi.org/10.2174/1389203715666140327105143.Search in Google Scholar PubMed PubMed Central
[10] E. Erickson, S. Wakao, and K. K. Niyogi, “Light stress and photoprotection in Chlamydomonas reinhardtii,” Plant J., vol. 82, no. 3, pp. 449–465, 2015. https://doi.org/10.1111/tpj.12825.Search in Google Scholar PubMed
[11] H. Gaffron and J. Rubin, “Fermentative and photochemical production of hydrogen in algae,” J. Gen. Physiol., vol. 26, no. 2, pp. 219–240, 1942. https://doi.org/10.1085/jgp.26.2.219.Search in Google Scholar PubMed PubMed Central
[12] H. Gaffron, “Reduction of carbon dioxide with molecular hydrogen in green algae,” Nature, vol. 143, no. 3614, pp. 204–205, 1939. https://doi.org/10.1038/143204a0.Search in Google Scholar
[13] A. Melis, L. Zhang, M. Forestier, M. L. Ghirardi, and M. Seibert, “Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii,” Plant Physiol., vol. 122, no. 1, pp. 127–136, 2000. https://doi.org/10.1104/pp.122.1.127.Search in Google Scholar PubMed PubMed Central
[14] A. Hemschemeier and T. Happe, “Alternative photosynthetic electron transport pathways during anaerobiosis in the green alga Chlamydomonas reinhardtii,” Biochim. Biophys. Acta, vol. 1807, no. 8, pp. 919–926, 2011. https://doi.org/10.1016/j.bbabio.2011.02.010.Search in Google Scholar PubMed
[15] S. T. Stripp, et al.., “How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms,” Proc. Natl. Acad. Sci. U. S. A., vol. 106, no. 41, pp. 17331–17336, 2009. https://doi.org/10.1073/pnas.0905343106.Search in Google Scholar PubMed PubMed Central
[16] J. Esselborn, L. Kertess, U. P. Apfel, E. Hofmann, and T. Happe, “Loss of specific active-site iron atoms in oxygen-exposed [FeFe]-Hydrogenase determined by detailed X-ray structure analyses,” J. Am. Chem. Soc., vol. 141, no. 44, pp. 17721–17728, 2019. https://doi.org/10.1021/jacs.9b07808.Search in Google Scholar PubMed
[17] A. Hemschemeier, A. Melis, and T. Happe, “Analytical approaches to photobiological hydrogen production in unicellular green algae,” Photosynth. Res., vol. 102, nos. 2–3, pp. 523–540, 2009. https://doi.org/10.1007/s11120-009-9415-5.Search in Google Scholar PubMed PubMed Central
[18] C. Kamp, A. Silakov, M. Winkler, E. J. Reijerse, W. Lubitz, and T. Happe, “Isolation and first EPR characterization of the [FeFe]-hydrogenases from green algae,” Biochim. Biophys. Acta, vol. 1777, no. 5, pp. 410–416, 2008. https://doi.org/10.1016/j.bbabio.2008.02.002.Search in Google Scholar PubMed
[19] S. Kosourov, M. Jokel, E.-M. Aro, and Y. Allahverdiyeva, “A new approach for sustained and efficient H2 photoproduction by Chlamydomonas reinhardtii,” Energy Environ. Sci., vol. 11, no. 6, pp. 1431–1436, 2018. https://doi.org/10.1039/C8EE00054A.Search in Google Scholar
[20] A. Dubini and M. L. Ghirardi, “Engineering photosynthetic organisms for the production of biohydrogen,” Photosynth. Res., vol. 123, no. 3, pp. 241–253, 2015. https://doi.org/10.1007/s11120-014-9991-x.Search in Google Scholar PubMed PubMed Central
[21] J. Legrand, A. Artu, and J. Pruvost, “A review on photobioreactor design and modelling for microalgae production,” React. Chem. Eng., vol. 6, no. 7, pp. 1134–1151, 2021. https://doi.org/10.1039/D0RE00450B.Search in Google Scholar
[22] S. Fouchard, et al.., “Autotrophic and mixotrophic hydrogen photoproduction in sulfur-deprived Chlamydomonas cells,” Appl. Environ. Microbiol., vol. 71, no. 10, pp. 6199–6205, 2005. https://doi.org/10.1128/AEM.71.10.6199-6205.2005.Search in Google Scholar PubMed PubMed Central
[23] K. J. Lauersen, “Eukaryotic microalgae as hosts for light-driven heterologous isoprenoid production,” Planta, vol. 249, no. 1, pp. 155–180, 2019. https://doi.org/10.1007/s00425-018-3048-x.Search in Google Scholar PubMed
[24] A. Hemschemeier and T. Happe, “The plasticity of redox cofactors: from metalloenzymes to redox-active DNA,” Nat. Rev. Chem, vol. 2, no. 9, pp. 231–243, 2018. https://doi.org/10.1038/s41570-018-0029-3.Search in Google Scholar
[25] L. McElwain, K. Phair, C. Kealey, and D. Brady, “Current trends in biopharmaceuticals production in Escherichia coli,” Biotechnol. Lett., vol. 44, no. 8, pp. 917–931, 2022. https://doi.org/10.1007/s10529-022-03276-5.Search in Google Scholar PubMed
[26] T. Happe and A. Kaminski, “Differential regulation of the Fe-hydrogenase during anaerobic adaptation in the green alga Chlamydomonas reinhardtii,” Eur. J. Biochem., vol. 269, no. 3, pp. 1022–1032, 2002. https://doi.org/10.1046/j.0014-2956.2001.02743.x.Search in Google Scholar PubMed
[27] L. Florin, A. Tsokoglou, and T. Happe, “A novel type of iron hydrogenase in the green alga Scenedesmus obliquus is linked to the photosynthetic electron transport chain,” J. Biol. Chem., vol. 276, no. 9, pp. 6125–6132, 2001. https://doi.org/10.1074/jbc.M008470200.Search in Google Scholar PubMed
[28] S. Morra, M. Arizzi, F. Valetti, and G. Gilardi, “Oxygen stability in the new [FeFe]-Hydrogenase from Clostridium beijerinckii SM10 (CbA5H),” Biochemistry, vol. 55, no. 42, pp. 5897–5900, 2016. https://doi.org/10.1021/acs.biochem.6b00780.Search in Google Scholar PubMed
[29] M. Winkler, et al.., “A safety cap protects hydrogenase from oxygen attack,” Nat. Commun., vol. 12, no. 1, p. 756, 2021. https://doi.org/10.1038/s41467-020-20861-2.Search in Google Scholar PubMed PubMed Central
[30] J. Arnau, D. Yaver, and C. M. Hjort, “Strategies and challenges for the development of industrial enzymes using fungal cell factories,” in Grand Challenges in Fungal Biotechnology, H. Nevalainen, Ed., Cham, Springer International Publishing, 2020, pp. 179–210.10.1007/978-3-030-29541-7_7Search in Google Scholar
[31] J. M. Kuchenreuther, C. S. Grady-Smith, A. S. Bingham, S. J. George, S. P. Cramer, and J. R. Swartz, “High-yield expression of heterologous [FeFe] hydrogenases in Escherichia coli,” PLoS One, vol. 5, no. 11, p. e15491, 2010. https://doi.org/10.1371/journal.pone.0015491.Search in Google Scholar PubMed PubMed Central
[32] J. Esselborn, et al.., “Spontaneous activation of [FeFe]-hydrogenases by an inorganic [2Fe] active site mimic,” Nat. Chem. Biol., vol. 9, no. 10, pp. 607–609, 2013. https://doi.org/10.1038/nchembio.1311.Search in Google Scholar PubMed PubMed Central
[33] C. F. Megarity, et al.., “Electrochemical investigations of the mechanism of assembly of the active-site H-cluster of [FeFe]-Hydrogenases,” J. Am. Chem. Soc., vol. 138, no. 46, pp. 15227–15233, 2016. https://doi.org/10.1021/jacs.6b09366.Search in Google Scholar PubMed
[34] F. A. Armstrong, R. M. Evans, S. V. Hexter, B. J. Murphy, M. M. Roessler, and P. Wulff, “Guiding principles of hydrogenase catalysis instigated and clarified by protein film electrochemistry,” Acc. Chem. Res., vol. 49, no. 5, pp. 884–892, 2016. https://doi.org/10.1021/acs.accounts.6b00027.Search in Google Scholar PubMed
[35] D. Adam, L. Bösche, L. Castañeda-Losada, M. Winkler, U. P. Apfel, and T. Happe, “Sunlight-dependent hydrogen production by photosensitizer/hydrogenase systems,” ChemSusChem, vol. 10, no. 5, pp. 894–902, 2017. https://doi.org/10.1002/cssc.201601523.Search in Google Scholar PubMed
[36] M. Winkler, S. Kawelke, and T. Happe, “Light driven hydrogen production in protein based semi-artificial systems,” Bioresour. Technol., vol. 102, no. 18, pp. 8493–8500, 2011. https://doi.org/10.1016/j.biortech.2011.05.019.Search in Google Scholar PubMed
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Survey
- Biological engineering – an engineering discipline crucial to the future of our civilization
- Forum
- New biological solutions to the many problems of our time
- Survey
- Biological engineering as a driver of innovation: implications for the economy
- Advancing vertical farming with automation for sustainable food production
- Harnessing microalgae: from biology to innovation in sustainable solutions
- Generation of molecular hydrogen (H2) by microalgae and their biocatalysts
- Biocatalytic approaches for plastic recycling
- Engineered living materials: pushing the boundaries of materials sciences through biological engineering
- The fabrication-assembly challenge in tissue engineering
- Evolution of biofabrication and 3D-bioprinting technologies – from market pull to technology push
- A bio-engineering approach to generate bioinspired (spider) silk protein-based materials
- RNA aptamers: promising tools in synthetic biology
- Automated handling of biological objects with a flexible gripper for biodiversity research
- Building with renewable materials
- Growing new types of building materials: mycelium-based composite materials
- Façade greening – from science to school
Articles in the same Issue
- Frontmatter
- Survey
- Biological engineering – an engineering discipline crucial to the future of our civilization
- Forum
- New biological solutions to the many problems of our time
- Survey
- Biological engineering as a driver of innovation: implications for the economy
- Advancing vertical farming with automation for sustainable food production
- Harnessing microalgae: from biology to innovation in sustainable solutions
- Generation of molecular hydrogen (H2) by microalgae and their biocatalysts
- Biocatalytic approaches for plastic recycling
- Engineered living materials: pushing the boundaries of materials sciences through biological engineering
- The fabrication-assembly challenge in tissue engineering
- Evolution of biofabrication and 3D-bioprinting technologies – from market pull to technology push
- A bio-engineering approach to generate bioinspired (spider) silk protein-based materials
- RNA aptamers: promising tools in synthetic biology
- Automated handling of biological objects with a flexible gripper for biodiversity research
- Building with renewable materials
- Growing new types of building materials: mycelium-based composite materials
- Façade greening – from science to school