Startseite Generation of molecular hydrogen (H2) by microalgae and their biocatalysts
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Generation of molecular hydrogen (H2) by microalgae and their biocatalysts

  • Anja Hemschemeier

    PD Dr. Anja Hemschemeier is associate professor and junior research group leader in the Photobiotechnology group at Ruhr University Bochum. She works on hypoxic acclimation of microalgae and on the elucidation of cellular stress responses and their regulation at the molecular level.

    ORCID logo EMAIL logo
    und Thomas Happe

    Prof. Dr. Thomas Happe is professor and head of the Photobiotechnology group at Ruhr University Bochum. He studies the catalytic principles of hydrogenases and their redox partners. Building on this, he also works on optimizing these biocatalysts and on the design of artificial hydrogenases.

    ORCID logo
Veröffentlicht/Copyright: 28. Juni 2024

Abstract

Molecular hydrogen (H2) is a potent fuel and required for many industrial synthetic processes. To date, its large-scale production is highly energy-intensive and mostly based on fossil fuels. Biological H2 generation is widespread in nature and could alleviate many of the impacts associated with current H2 technologies. Several species of microalgae and cyanobacteria can produce H2 employing the process of photosynthesis, that is, they use light as the energy-source, and obtain the required electrons from water. Large-scale H2 production by algae requires specialized fermenters whose design needs expertise both in biology and process engineering. Cell-free or electrode systems employing the natural biocatalysts could be employed alternatively. Because H2 converting biocatalysts are specialized proteins mostly sensitive towards air, the implementation of cell-free systems on a large scale requires manufacturing and processing pipelines different from existing enzyme technologies.

Zusammenfassung

Molekularer Wasserstoff (H2) ist ein energiereicher Brennstoff, der für viele industrielle Syntheseprozesse benötigt wird. Seine großtechnische Herstellung ist bisher sehr energieaufwändig und basiert meist auf fossilen Brennstoffen. Die biologische H2-Produktion ist in der Natur weit verbreitet und könnte viele der mit den derzeitigen H2-Technologien verbundenen Auswirkungen mildern. Verschiedene Arten von Mikroalgen und Cyanobakterien können Wasserstoff durch Photosynthese erzeugen, d. h. sie nutzen Licht als Energiequelle und gewinnen die benötigten Elektronen aus Wasser. Für die großtechnische Wasserstoffproduktion durch Algen werden spezielle Fermenter benötigt, deren Auslegung sowohl biologisches als auch verfahrenstechnisches Know-how erfordert. Alternativ können zellfreie oder elektrodenbasierte Systeme eingesetzt werden, die natürliche Biokatalysatoren nutzen. Da es sich bei den Biokatalysatoren für die H2-Umwandlung um spezialisierte Proteine handelt, die in der Regel Sauerstoff-empfindlich sind, erfordert die großtechnische Umsetzung zellfreier Systeme Herstellungs- und Aufarbeitungsverfahren, die sich von den bestehenden Enzymtechnologien unterscheiden.


Corresponding author: Anja Hemschemeier, Photobiotechnology Group, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany, E-mail:

Funding source: Deutsche Forschungsgemeinschaft

Award Identifier / Grant number: RTG 2341

Funding source: VolkswagenStiftung

Award Identifier / Grant number: Az 98621

Funding source: Deutsche Forschungsgemeinschaft

Award Identifier / Grant number: HA 2555/10-1

About the authors

Anja Hemschemeier

PD Dr. Anja Hemschemeier is associate professor and junior research group leader in the Photobiotechnology group at Ruhr University Bochum. She works on hypoxic acclimation of microalgae and on the elucidation of cellular stress responses and their regulation at the molecular level.

Thomas Happe

Prof. Dr. Thomas Happe is professor and head of the Photobiotechnology group at Ruhr University Bochum. He studies the catalytic principles of hydrogenases and their redox partners. Building on this, he also works on optimizing these biocatalysts and on the design of artificial hydrogenases.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. Both authors wrote and edited the manuscript.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: This research work was supported by Deutsche Forschungsgemeinschaft RTG 2341; VolkswagenStiftung Az 98621; Deutsche Forschungsgemeinschaft HA 2555/10-1.

  5. Data availability: Not applicable.

References

[1] K. Gutekunst and R. Schulz, “CHAPTER 4 the physiology of the bidirectional NiFe-hydrogenase in cyanobacteria and the role of hydrogen throughout the evolution of life,” in Microalgal Hydrogen Production: Achievements and Perspectives, M. Seibert and G. Torzillo, Eds., London, UK, The Royal Society of Chemistry, 2018, pp. 107–138.10.1039/9781849737128-00107Suche in Google Scholar

[2] T. D. Mand and W. W. Metcalf, “Energy conservation and hydrogenase function in methanogenic archaea, in particular the genus Methanosarcina,” Microbiol. Mol. Biol. Rev., vol. 83, no. 4, pp. e00020-e00119, 2019. https://doi.org/10.1128/MMBR.00020-19.Suche in Google Scholar PubMed PubMed Central

[3] E. Boyd, G. Schut, M. Adams, and J. Peters, “Hydrogen metabolism and the evolution of biological respiration,” Microbe Mag., vol. 9, no. 9, pp. 361–367, 2014. https://doi.org/10.1128/microbe.9.361.1.Suche in Google Scholar

[4] S. L. Benoit, R. J. Maier, R. G. Sawers, and C. Greening, “Molecular hydrogen metabolism: a widespread trait of pathogenic bacteria and protists,” Microbiol. Mol. Biol. Rev., vol. 84, no. 1, pp. e00092-19, 2020. https://doi.org/10.1128/MMBR.00092-19.Suche in Google Scholar PubMed PubMed Central

[5] M. C. Posewitz, “CHAPTER 7 Metabolism and genetics of algal hydrogen production,” in Microalgal Hydrogen Production: Achievements and Perspectives, M. Seibert and G. Torzillo, Eds., London, UK, The Royal Society of Chemistry, 2018, pp. 167–188.10.1039/9781849737128-00167Suche in Google Scholar

[6] A. Hemschemeier, M. C. Posewitz, and T. Happe, “Chapter 10 – Hydrogenases and hydrogen production,” in The Chlamydomonas Sourcebook, 3rd ed A. R. Grossman and F.-A. Wollman, Eds., London, Academic Press, 2023, pp. 343–367.10.1016/B978-0-12-821430-5.00008-0Suche in Google Scholar

[7] V. J. Thannickal, “Oxygen in the evolution of complex life and the price we pay,” Am. J. Respir. Cell Mol. Biol., vol. 40, no. 5, pp. 507–510, 2009. https://doi.org/10.1165/rcmb.2008-0360PS.Suche in Google Scholar PubMed PubMed Central

[8] A. Stirbet, D. Lazár, Y. Guo, and G. Govindjee, “Photosynthesis: basics, history and modelling,” Ann. Bot., vol. 126, no. 4, pp. 511–537, 2020. https://doi.org/10.1093/aob/mcz171.Suche in Google Scholar PubMed PubMed Central

[9] T. Roach and A. Krieger-Liszkay, “Regulation of photosynthetic electron transport and photoinhibition,” Curr. Protein Pept. Sci., vol. 15, no. 4, pp. 351–362, 2014. https://doi.org/10.2174/1389203715666140327105143.Suche in Google Scholar PubMed PubMed Central

[10] E. Erickson, S. Wakao, and K. K. Niyogi, “Light stress and photoprotection in Chlamydomonas reinhardtii,” Plant J., vol. 82, no. 3, pp. 449–465, 2015. https://doi.org/10.1111/tpj.12825.Suche in Google Scholar PubMed

[11] H. Gaffron and J. Rubin, “Fermentative and photochemical production of hydrogen in algae,” J. Gen. Physiol., vol. 26, no. 2, pp. 219–240, 1942. https://doi.org/10.1085/jgp.26.2.219.Suche in Google Scholar PubMed PubMed Central

[12] H. Gaffron, “Reduction of carbon dioxide with molecular hydrogen in green algae,” Nature, vol. 143, no. 3614, pp. 204–205, 1939. https://doi.org/10.1038/143204a0.Suche in Google Scholar

[13] A. Melis, L. Zhang, M. Forestier, M. L. Ghirardi, and M. Seibert, “Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii,” Plant Physiol., vol. 122, no. 1, pp. 127–136, 2000. https://doi.org/10.1104/pp.122.1.127.Suche in Google Scholar PubMed PubMed Central

[14] A. Hemschemeier and T. Happe, “Alternative photosynthetic electron transport pathways during anaerobiosis in the green alga Chlamydomonas reinhardtii,” Biochim. Biophys. Acta, vol. 1807, no. 8, pp. 919–926, 2011. https://doi.org/10.1016/j.bbabio.2011.02.010.Suche in Google Scholar PubMed

[15] S. T. Stripp, et al.., “How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms,” Proc. Natl. Acad. Sci. U. S. A., vol. 106, no. 41, pp. 17331–17336, 2009. https://doi.org/10.1073/pnas.0905343106.Suche in Google Scholar PubMed PubMed Central

[16] J. Esselborn, L. Kertess, U. P. Apfel, E. Hofmann, and T. Happe, “Loss of specific active-site iron atoms in oxygen-exposed [FeFe]-Hydrogenase determined by detailed X-ray structure analyses,” J. Am. Chem. Soc., vol. 141, no. 44, pp. 17721–17728, 2019. https://doi.org/10.1021/jacs.9b07808.Suche in Google Scholar PubMed

[17] A. Hemschemeier, A. Melis, and T. Happe, “Analytical approaches to photobiological hydrogen production in unicellular green algae,” Photosynth. Res., vol. 102, nos. 2–3, pp. 523–540, 2009. https://doi.org/10.1007/s11120-009-9415-5.Suche in Google Scholar PubMed PubMed Central

[18] C. Kamp, A. Silakov, M. Winkler, E. J. Reijerse, W. Lubitz, and T. Happe, “Isolation and first EPR characterization of the [FeFe]-hydrogenases from green algae,” Biochim. Biophys. Acta, vol. 1777, no. 5, pp. 410–416, 2008. https://doi.org/10.1016/j.bbabio.2008.02.002.Suche in Google Scholar PubMed

[19] S. Kosourov, M. Jokel, E.-M. Aro, and Y. Allahverdiyeva, “A new approach for sustained and efficient H2 photoproduction by Chlamydomonas reinhardtii,” Energy Environ. Sci., vol. 11, no. 6, pp. 1431–1436, 2018. https://doi.org/10.1039/C8EE00054A.Suche in Google Scholar

[20] A. Dubini and M. L. Ghirardi, “Engineering photosynthetic organisms for the production of biohydrogen,” Photosynth. Res., vol. 123, no. 3, pp. 241–253, 2015. https://doi.org/10.1007/s11120-014-9991-x.Suche in Google Scholar PubMed PubMed Central

[21] J. Legrand, A. Artu, and J. Pruvost, “A review on photobioreactor design and modelling for microalgae production,” React. Chem. Eng., vol. 6, no. 7, pp. 1134–1151, 2021. https://doi.org/10.1039/D0RE00450B.Suche in Google Scholar

[22] S. Fouchard, et al.., “Autotrophic and mixotrophic hydrogen photoproduction in sulfur-deprived Chlamydomonas cells,” Appl. Environ. Microbiol., vol. 71, no. 10, pp. 6199–6205, 2005. https://doi.org/10.1128/AEM.71.10.6199-6205.2005.Suche in Google Scholar PubMed PubMed Central

[23] K. J. Lauersen, “Eukaryotic microalgae as hosts for light-driven heterologous isoprenoid production,” Planta, vol. 249, no. 1, pp. 155–180, 2019. https://doi.org/10.1007/s00425-018-3048-x.Suche in Google Scholar PubMed

[24] A. Hemschemeier and T. Happe, “The plasticity of redox cofactors: from metalloenzymes to redox-active DNA,” Nat. Rev. Chem, vol. 2, no. 9, pp. 231–243, 2018. https://doi.org/10.1038/s41570-018-0029-3.Suche in Google Scholar

[25] L. McElwain, K. Phair, C. Kealey, and D. Brady, “Current trends in biopharmaceuticals production in Escherichia coli,” Biotechnol. Lett., vol. 44, no. 8, pp. 917–931, 2022. https://doi.org/10.1007/s10529-022-03276-5.Suche in Google Scholar PubMed

[26] T. Happe and A. Kaminski, “Differential regulation of the Fe-hydrogenase during anaerobic adaptation in the green alga Chlamydomonas reinhardtii,” Eur. J. Biochem., vol. 269, no. 3, pp. 1022–1032, 2002. https://doi.org/10.1046/j.0014-2956.2001.02743.x.Suche in Google Scholar PubMed

[27] L. Florin, A. Tsokoglou, and T. Happe, “A novel type of iron hydrogenase in the green alga Scenedesmus obliquus is linked to the photosynthetic electron transport chain,” J. Biol. Chem., vol. 276, no. 9, pp. 6125–6132, 2001. https://doi.org/10.1074/jbc.M008470200.Suche in Google Scholar PubMed

[28] S. Morra, M. Arizzi, F. Valetti, and G. Gilardi, “Oxygen stability in the new [FeFe]-Hydrogenase from Clostridium beijerinckii SM10 (CbA5H),” Biochemistry, vol. 55, no. 42, pp. 5897–5900, 2016. https://doi.org/10.1021/acs.biochem.6b00780.Suche in Google Scholar PubMed

[29] M. Winkler, et al.., “A safety cap protects hydrogenase from oxygen attack,” Nat. Commun., vol. 12, no. 1, p. 756, 2021. https://doi.org/10.1038/s41467-020-20861-2.Suche in Google Scholar PubMed PubMed Central

[30] J. Arnau, D. Yaver, and C. M. Hjort, “Strategies and challenges for the development of industrial enzymes using fungal cell factories,” in Grand Challenges in Fungal Biotechnology, H. Nevalainen, Ed., Cham, Springer International Publishing, 2020, pp. 179–210.10.1007/978-3-030-29541-7_7Suche in Google Scholar

[31] J. M. Kuchenreuther, C. S. Grady-Smith, A. S. Bingham, S. J. George, S. P. Cramer, and J. R. Swartz, “High-yield expression of heterologous [FeFe] hydrogenases in Escherichia coli,” PLoS One, vol. 5, no. 11, p. e15491, 2010. https://doi.org/10.1371/journal.pone.0015491.Suche in Google Scholar PubMed PubMed Central

[32] J. Esselborn, et al.., “Spontaneous activation of [FeFe]-hydrogenases by an inorganic [2Fe] active site mimic,” Nat. Chem. Biol., vol. 9, no. 10, pp. 607–609, 2013. https://doi.org/10.1038/nchembio.1311.Suche in Google Scholar PubMed PubMed Central

[33] C. F. Megarity, et al.., “Electrochemical investigations of the mechanism of assembly of the active-site H-cluster of [FeFe]-Hydrogenases,” J. Am. Chem. Soc., vol. 138, no. 46, pp. 15227–15233, 2016. https://doi.org/10.1021/jacs.6b09366.Suche in Google Scholar PubMed

[34] F. A. Armstrong, R. M. Evans, S. V. Hexter, B. J. Murphy, M. M. Roessler, and P. Wulff, “Guiding principles of hydrogenase catalysis instigated and clarified by protein film electrochemistry,” Acc. Chem. Res., vol. 49, no. 5, pp. 884–892, 2016. https://doi.org/10.1021/acs.accounts.6b00027.Suche in Google Scholar PubMed

[35] D. Adam, L. Bösche, L. Castañeda-Losada, M. Winkler, U. P. Apfel, and T. Happe, “Sunlight-dependent hydrogen production by photosensitizer/hydrogenase systems,” ChemSusChem, vol. 10, no. 5, pp. 894–902, 2017. https://doi.org/10.1002/cssc.201601523.Suche in Google Scholar PubMed

[36] M. Winkler, S. Kawelke, and T. Happe, “Light driven hydrogen production in protein based semi-artificial systems,” Bioresour. Technol., vol. 102, no. 18, pp. 8493–8500, 2011. https://doi.org/10.1016/j.biortech.2011.05.019.Suche in Google Scholar PubMed

Received: 2023-10-27
Accepted: 2024-04-08
Published Online: 2024-06-28
Published in Print: 2024-07-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/auto-2024-0064/html
Button zum nach oben scrollen