Startseite Technik Narrowband transmission filters based on resonant waveguide gratings and conformal dielectric-plasmonic coatings
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Narrowband transmission filters based on resonant waveguide gratings and conformal dielectric-plasmonic coatings

  • Benjamin Gallinet ORCID logo EMAIL logo , Giorgio Quaranta und Christian Schneider
Veröffentlicht/Copyright: 2. November 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Nanostructured filter arrays on image sensors are promising for miniature spectrometers and spectral imagers. In this work, we report on resonant waveguide gratings fabricated by UV nanoimprint lithography and conformal dielectric-plasmonic coatings. Optical measurements in accordance with numerical simulations report on a resonance bandwidth of 20 nm in transmission in the visible range. The impact of cladding thickness and filter lateral size on the resonance properties is investigated with the help of numerical calculations. Finally, it is shown that the proposed geometry based on conformal coatings has a very efficient blocking rate compared to other nanostructured filter approaches.


Corresponding author: Benjamin Gallinet, CSEM Muttenz, Tramstrasse 99, 4132Muttenz, Switzerland, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] Y. Liu, H. Pu, and D.-W. Sun, “Hyperspectral imaging technique for evaluating food quality and safety during various processes: A review of recent applications,” Trends Food Sci. Technol., vol. 69, pp. 25–35, 2017, https://doi.org/10.1016/j.tifs.2017.08.013.Suche in Google Scholar

[2] M. J. Khan, H. S. Khan, A. Yousaf, K. Khurshid, and A. Abbas, “Modern trends in hyperspectral image analysis: a review,” IEEE Access, vol. 6, pp. 14118–14129, 2018. https://doi.org/10.1109/ACCESS.2018.2812999.Suche in Google Scholar

[3] D. Goldring, D. Sharon, S. Rosen, et al., “Spectrometry system with visible aiming beam,” WO Patent 2016/125165, Aug. 11, 2016.Suche in Google Scholar

[4] B. Geelen, A. Lambrechts, and K. Tack, “Spectral camera with mosaic of filters for each image pixel,” US Patent 9857222, Jan. 2, 2018.Suche in Google Scholar

[5] S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett., vol. 12, pp. 4349–4354, 2012, https://doi.org/10.1021/nl302110z.Suche in Google Scholar

[6] S. Junger, W. Tschekalinskij, and N. Weber, “Optical bandpass filter system, in particular for multichannel spectral-selective measurements,” WO Patent 2012/007147, Jul. 11, 2011.Suche in Google Scholar

[7] B. I. Choi, B. Lee, and M. K. song, “Nano-optic filter array based sensor,” US Patent 2012/0129269, May 24 2012.Suche in Google Scholar

[8] G. Quaranta, G. Basset, O. J. F. Martin, and B. Gallinet, “Recent advances in resonant waveguide gratings,” Laser Photonics Rev., vol. 12, p. 1800017, 2018. https://doi.org/10.1002/lpor.201800017.Suche in Google Scholar

[9] S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B, vol. 65, p. 235112, 2002, https://doi.org/10.1103/physrevb.65.235112.Suche in Google Scholar

[10] A. F. Kaplan, T. Xu, and L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett., vol. 99, p. 143111, 2011, https://doi.org/10.1063/1.3647633.Suche in Google Scholar

[11] Y.-T. Yoon, C.-H. Park, and S.-S. Lee, “Highly efficient color filter incorporating a thin metal–dielectric resonant structure,” Appl. Phy. Express, vol. 5, p. 022501, 2012, https://doi.org/10.1143/apex.5.022501.Suche in Google Scholar

[12] D. B. Mazulquim, K. J. Lee, J. W. Yoon, et al., “Efficient band-pass color filters enabled by resonant modes and plasmons near the Rayleigh anomaly,” Opt. Express, vol. 22, p. 30843, 2014, https://doi.org/10.1364/oe.22.030843.Suche in Google Scholar

[13] J. Wang, Q. Fan, S. Zhang, et al., “Ultra-thin plasmonic color filters incorporating free-standing resonant membrane waveguides with high transmission efficiency,” Appl. Phys. Lett., vol. 110, p.031110, 2017, https://doi.org/10.1063/1.4974455.Suche in Google Scholar

[14] C. Bauer and H. Giessen, “Tailoring the plasmonic Fano resonance in metallic photonic crystals,” Nanophotonics, vol. 9, pp. 523–531, 2020, https://doi.org/10.1515/nanoph-2019-0335.Suche in Google Scholar

[15] C. Genet, M. P. van Exter, and J. P. Woerdmann, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun., vol. 225, pp. 331–336, 2003, https://doi.org/10.1016/j.optcom.2003.07.037.Suche in Google Scholar

[16] M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B, vol. 67, p.085415, 2003, https://doi.org/10.1103/physrevb.67.085415.Suche in Google Scholar

[17] F. Lütolf, O. J. F. Martin, and B. Gallinet, “Fano-resonant aluminum and gold nanostructures created with a tunable, up-scalable process,” Nanoscale, vol. 7, p. 18179, 2015, https://doi.org/10.1039/c5nr05316a.Suche in Google Scholar

[18] P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A, vol. 13, pp. 779–784, 1996, https://doi.org/10.1364/josaa.13.000779.Suche in Google Scholar

[19] B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: Probing structure at the ngström scale with visible light,” Nano Lett., vol. 13, pp. 497–503, 2013, https://doi.org/10.1021/nl303896d.Suche in Google Scholar

[20] J. M. Bendickson, E. N. Glytsis, T. K. Gaylord, and D. L. Brundrett, “Guided-mode resonant subwavelength gratings: effects of finite beams and finite gratings,” J. Opt. Soc. Am. A, vol. 18, pp. 1912–1928, 2001, https://doi.org/10.1364/josaa.18.001912.Suche in Google Scholar

[21] G. Niederer, H. P. Herzig, J. Shamir, H. Thiele, M. Schnieper, and C. Zschokke, “Tunable, oblique incidence resonant grating filter for telecommunications,” Appl. Opt., vol. 43, pp. 1683–1694, 2004, https://doi.org/10.1364/ao.43.001683.Suche in Google Scholar

[22] I. Gyongy, A. Davies, B. Gallinet, et al., “Cylindrical microlensing for enhanced collection efficiency of small pixel SPAD arrays in single-molecule localisation microscopy,” Opt. Express, vol. 26, pp. 2280–2291, 2018, https://doi.org/10.1364/oe.26.002280.Suche in Google Scholar

Received: 2020-08-11
Accepted: 2020-10-13
Published Online: 2020-11-02
Published in Print: 2021-02-23

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/aot-2020-0049/html
Button zum nach oben scrollen