Startseite Abelian branched covers of rational surfaces, II
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Abelian branched covers of rational surfaces, II

  • Robert Harris und B. Doug Park EMAIL logo
Veröffentlicht/Copyright: 5. August 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Building upon our previous joint work with A. Joshi and M. Poddar, we continue our study of abelian covers of rational surfaces which are branched over line arrangements. We use these covers as building blocks to construct new infinite families of closed simply connected nonspin irreducible symplectic 4-manifolds with positive signature.

MSC 2010: 14E20; 14N20; 53D35; 57R55

Acknowledgements

The first author thanks David McKinnon for a helpful discussion. The second author was partially supported by a Research Incentive Fund from the University of Waterloo.

  1. Communicated by:

References

[1] A. Akhmedov, M. C. Hughes, B. D. Park, Geography of simply connected nonspin symplectic 4-manifolds with positive signature. Pacific J. Math. 261 (2013), 257–282. MR3037567 Zbl 1270.57067Suche in Google Scholar

[2] A. Akhmedov, B. D. Park, Geography of simply connected nonspin symplectic 4-manifolds with positive signature. II. Canad. Math. Bull. 64 (2021), 418–428. MR4273209 Zbl 1470.57041Suche in Google Scholar

[3] R. C. Baker, G. Harman, J. Pintz, The difference between consecutive primes. II. Proc. London Math. Soc. (3) 83 (2001), 532–562. MR1851081 Zbl 1016.11037Suche in Google Scholar

[4] W. P. Barth, K. Hulek, C. A. M. Peters, A. Van de Ven, Compact complex surfaces. Springer 2004. MR2030225 Zbl 1036.14016Suche in Google Scholar

[5] T. Bauer, S. Di Rocco, B. Harbourne, J. Huizenga, A. Lundman, P. Pokora, T. Szemberg, Bounded negativity and arrangements of lines. Int. Math. Res. Not. IMRN no. 19 (2015), 9456–9471. MR3431599 Zbl 1330.14007Suche in Google Scholar

[6] M. Dumnicki, L. u. Farnik, K. Hanumanthu, G. Malara, T. Szemberg, J. Szpond, H. Tutaj-Gasińska, Negative curves on special rational surfaces. In: Analytic and algebraic geometry. 3, 67–78, Wydawn. Uniw. Łódzkiego, Łódź 2019. MR4481053 Zbl 1510.14004Suche in Google Scholar

[7] R. Fintushel, R. J. Stern, Knots, links, and 4-manifolds. Invent. Math. 134 (1998), 363–400. MR1650308 Zbl 0914.57015Suche in Google Scholar

[8] R. E. Gompf, A new construction of symplectic manifolds. Ann. of Math. (2) 142 (1995), 527–595. MR1356781 Zbl 0849.53027Suche in Google Scholar

[9] R. E. Gompf, A. I. Stipsicz, 4-manifolds and Kirby calculus, volume 20 of Graduate Studies in Mathematics. Amer. Math. Soc. 1999. MR1707327 Zbl 0933.57020Suche in Google Scholar

[10] M. J. D. Hamilton, D. Kotschick, Minimality and irreducibility of symplectic four-manifolds. Int. Math. Res. Not. (2006), Art. ID 35032, 13 pages. MR2211144 Zbl 1101.53052Suche in Google Scholar

[11] R. Harris, A. Joshi, B. D. Park, M. Poddar, Abelian branched covers of rational surfaces. Adv. Geom. 23 (2023), 401–411. MR4626312 Zbl 1520.14025Suche in Google Scholar

[12] E. Hironaka, Abelian coverings of the complex projective plane branched along configurations of real lines. Mem. Amer. Math. Soc. 105 (1993), vi+85. MR1164128 Zbl 0788.14054Suche in Google Scholar

[13] D. Kotschick, The Seiberg–Witten invariants of symplectic four-manifolds (after C. H. Taubes). Number 241, Exp. No. 812, 4, 195–220, 1997. MR1472540 Zbl 0882.57026Suche in Google Scholar

[14] V. S. Kulikov, Old examples and a new example of surfaces of general type with pg = 0. Izv. Ross. Akad. Nauk Ser. Mat. 68 (2004), 123–170. MR2104852 Zbl 1073.14055Suche in Google Scholar

[15] J. D. McCarthy, J. G. Wolfson, Symplectic normal connect sum. Topology 33 (1994), 729–764. MR1293308 Zbl 0812.53033Suche in Google Scholar

[16] M. V. Nori, Zariski’s conjecture and related problems. Ann. Sci. École Norm. Sup. (4) 16 (1983), 305–344. MR732347 Zbl 0527.14016Suche in Google Scholar

[17] J. Park, Exotic smooth structures on 4-manifolds. II. Topology Appl. 132 (2003), 195–202. MR1991809 Zbl 1028.57032Suche in Google Scholar

[18] M. Popa, Notes for 483-3: Kodaira dimension of algebraic varieties. https://people.math.harvard.edu/∼mpopa/483-3/notes.pdf.Suche in Google Scholar

[19] K. Ueno, Classification theory of algebraic varieties and compact complex spaces. Springer 1975. MR506253 Zbl 0299.14007Suche in Google Scholar

[20] M. Usher, Minimality and symplectic sums. Int. Math. Res. Not. (2006), Art. ID 49857, 17 pages. MR2250015 Zbl 1110.57017Suche in Google Scholar

Published Online: 2024-08-05
Published in Print: 2024-07-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston, Germany

Heruntergeladen am 25.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/advgeom-2024-0015/html
Button zum nach oben scrollen