Startseite Automorphisms and opposition in spherical buildings of classical type
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Automorphisms and opposition in spherical buildings of classical type

  • James Parkinson und Hendrik Van Maldeghem EMAIL logo
Veröffentlicht/Copyright: 5. August 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

An automorphism of a spherical building is called domestic if it maps no chamber to an opposite chamber. In this paper we classify domestic automorphisms of spherical buildings of classical type.

MSC 2010: 20E42; 51E24; 51A50; 20E45
  1. Communicated by: R. Weiss

References

[1] P. Abramenko, K. S. Brown, Buildings. Springer 2008. MR2439729 Zbl 1214.20033Suche in Google Scholar

[2] P. Abramenko, K. S. Brown, Automorphisms of non-spherical buildings have unbounded displacement. Innov. Incidence Geom. 10 (2009), 1–13. MR2665192 Zbl 1276.51004Suche in Google Scholar

[3] N. Bourbaki, Lie groups and Lie algebras. Chapters 4–6. Springer 2002. MR1890629 Zbl 0983.17001Suche in Google Scholar

[4] R. W. Carter, Simple groups of Lie type. Wiley-Interscience 1989. MR1013112 Zbl 0723.20006Suche in Google Scholar

[5] A. M. Cohen, E. E. Shult, Affine polar spaces. Geom. Dedicata 35 (1990), 43–76. MR1066558 Zbl 0755.51004Suche in Google Scholar

[6] B. De Bruyn, An introduction to incidence geometry. Springer 2016. MR3585811 Zbl 1376.51001Suche in Google Scholar

[7] B. De Bruyn, H. Van Maldeghem, Non-embeddable polar spaces. Münster J. Math. 7 (2014), 557–588. MR3426230 Zbl 1345.51004Suche in Google Scholar

[8] B. Leeb, A characterization of irreducible symmetric spaces and Euclidean buildings of higher rank by their asymptotic geometry, volume 326 of Bonner Mathematische Schriften. Universität Bonn, Mathematisches Institut, Bonn 2000. MR1934160 Zbl 1005.53031Suche in Google Scholar

[9] B. Mühlherr, H. P. Petersson, R. M. Weiss, Descent in buildings, volume 190 of Annals of Mathematics Studies. Princeton Univ. Press 2015. MR3364836 Zbl 1338.51002Suche in Google Scholar

[10] J. Parkinson, B. Temmermans, H. Van Maldeghem, The combinatorics of automorphisms and opposition in generalised polygons. Ann. Comb. 19 (2015), 567–619. MR3395495 Zbl 1327.05048Suche in Google Scholar

[11] J. Parkinson, H. Van Maldeghem, Opposition diagrams for automorphisms of large spherical buildings. J. Combin. Theory Ser. A 162 (2019), 118–166. MR3873873 Zbl 1411.51006Suche in Google Scholar

[12] J. Parkinson, H. Van Maldeghem, Opposition diagrams for automorphisms of small spherical buildings. Innov. Incidence Geom. 17 (2019), 141–188. MR3956902 Zbl 1472.51005Suche in Google Scholar

[13] J. Parkinson, H. Van Maldeghem, Automorphisms and opposition in spherical buildings of exceptional type, I. Canad. J. Math. 74 (2022), 1517–1578. MR4520661 Zbl 1510.20031Suche in Google Scholar

[14] J. Parkinson, H. Van Maldeghem, Automorphisms and opposition in spherical buildings of exceptional type, II: Moufang hexagons. Innov. Incidence Geom. 20 (2023), 443–470. MR4641401 Zbl 07760467Suche in Google Scholar

[15] A. E. Schroth, Characterizing symplectic quadrangles by their derivations. Arch. Math. (Basel) 58 (1992), 98–104. MR1139392 Zbl 0761.51004Suche in Google Scholar

[16] R. Steinberg, Lectures on Chevalley groups, volume 66 of University Lecture Series. Amer. Math. Soc. 2016. MR3616493 Zbl 1361.20003Suche in Google Scholar

[17] B. Temmermans, J. A. Thas, H. Van Maldeghem, Domesticity in projective spaces. Innov. Incidence Geom. 12 (2011), 141–149. MR2942721 Zbl 1305.51004Suche in Google Scholar

[18] B. Temmermans, J. A. Thas, H. Van Maldeghem, Collineations of polar spaces with restricted displacements. Des. Codes Cryptogr. 64 (2012), 61–80. MR2914402 Zbl 1242.51002Suche in Google Scholar

[19] B. Temmermans, J. A. Thas, H. Van Maldeghem, Domesticity in generalized quadrangles. Ann. Comb. 16 (2012), 905–916. MR3000452 Zbl 1259.51004Suche in Google Scholar

[20] J. Tits, Buildings of spherical type and finite BN-pairs. Springer 1974. MR470099 Zbl 0295.20047Suche in Google Scholar

[21] H. Van Maldeghem, Generalized polygons. Birkhäuser Verlag, Basel 1998. MR1725957 Zbl 0914.51005Suche in Google Scholar

[22] H. Van Maldeghem, Characterizations of trialities of type Iid in buildings of type D4. In: Groups of exceptional type, Coxeter groups and related geometries, volume 82 of Springer Proc. Math. Stat., 205–216, Springer 2014. MR3207278 Zbl 1338.51012Suche in Google Scholar

Received: 2023-03-12
Published Online: 2024-08-05
Published in Print: 2024-07-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston, Germany

Heruntergeladen am 26.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/advgeom-2024-0012/html
Button zum nach oben scrollen