Startseite Cysteine cathepsins and caspases in silicosis
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Cysteine cathepsins and caspases in silicosis

  • Gilles Lalmanach , Elisabeth Diot , Emmanuel Godat , Fabien Lecaille und Virginie Hervé-Grépinet
Veröffentlicht/Copyright: 20. Juli 2006
Biological Chemistry
Aus der Zeitschrift Band 387 Heft 7

Abstract

Silicosis is an occupational pneumoconiosis caused by inhalation of crystalline silica. It leads to the formation of fibrohyalin nodes that result in progressive fibrosis. Alternatively, emphysema may occur, with abnormal destruction of collagen fibres in the advanced stages. Although the pathophysiological mechanisms remain unclear, it has been established that the lung responds to silica by massive enrolment of alveolar macrophages, triggering an inflammatory cascade of reactions. An imbalance in the expression of lung proteases and their inhibitors is implicated in extracellular matrix remodelling and basement membrane disruption. Moreover, exposure to silica can initiate apoptotic cell death of macrophages. This review summarises the current knowledge on cysteine cathepsins that have been ignored so far during silicosis and outlines the recent progress on cellular pathways leading to silica-induced caspase activation, which have been partly delineated.

:

Corresponding author

References

Abrahamson, M., Buttle, D.J., Mason, R.W., Hansson, H., Grubb, A., Lilja, H., and Ohlsson, K. (1991a). Regulation of cystatin C activity by serine proteinases. Biomed. Biochim. Acta50, 587–593.Suche in Google Scholar

Abrahamson, M., Mason, R.W., Hansson, H., Buttle, D.J., Grubb, A., and Ohlsson, K. (1991b). Human cystatin C. role of the N-terminal segment in the inhibition of human cysteine proteinases and in its inactivation by leucocyte elastase. Biochem. J.273, 621–626.10.1042/bj2730621Suche in Google Scholar

Abrahamson, M., Alvarez-Fernandez, M., and Nathanson, C.M. (2003). Cystatins. Biochem. Soc. Symp.70, 179–199.Suche in Google Scholar

Barnes, P.J. (1998). New therapies for chronic obstructive pulmonary disease. Thorax53, 137–147.10.1136/thx.53.2.137Suche in Google Scholar

Barnes, P.J., Shapiro, S.D., and Pauwels, R.A. (2003). Chronic obstructive pulmonary disease: molecular and cellular mechanisms. Eur. Respir. J.22, 672–688.10.1183/09031936.03.00040703Suche in Google Scholar

Borges, V.M., Falcao, H., Leite-Junior, J.H., Alvim, L., Teixeira, G.P., Russo, M., Nobrega, A.F., Lopes, M.F., Rocco, P.M., Davidson, W.F., Linden, R., Yagita, H., Zin, W.A., and DosReis, G.A. (2001). Fas ligand triggers pulmonary silicosis. J. Exp. Med.194, 155–164.10.1084/jem.194.2.155Suche in Google Scholar

Borges, V.M., Lopes, M.F., Falcao, H., Leite-Junior, J.H., Rocco, P.R., Davidson, W.F., Linden, R., Zin, W.A., and DosReis, G.A. (2002). Apoptosis underlies immunopathogenic mechanisms in acute silicosis. Am. J. Respir. Cell. Mol. Biol.27, 78–84.10.1165/ajrcmb.27.1.4717Suche in Google Scholar

Brain, J.D. (1986). Toxicological aspects of alterations of pulmonary macrophage function. Annu. Rev. Pharmacol. Toxicol.26, 547–565.10.1146/annurev.pa.26.040186.002555Suche in Google Scholar

Brasch, F., Ten Brinke, A., Johnen, G., Ochs, M., Kapp, N., Muller, K.M., Beers, M.F., Fehrenbach, H., Richter, J., Batenburg, J.J., and Buhling, F. (2002). Involvement of cathepsin H in the processing of the hydrophobic surfactant-associated protein C in type II pneumocytes. Am. J. Respir. Cell. Mol. Biol.26, 659–670.10.1165/ajrcmb.26.6.4744Suche in Google Scholar

Buhling, F., Gerber, A., Ansorge, S., and Welte, T. (1999). Cathepsin cysteine proteinases in the lung. Pneumologie53, 400–407.Suche in Google Scholar

Buhling, F., Reisenauer, A., Gerber, A., Kruger, S., Weber, E., Bromme, D., Roessner, A., Ansorge, S., Welte, T., and Rocken, C. (2001). Cathepsin K: a marker of macrophage differentiation? J. Pathol.195, 375–382.10.1002/path.959Suche in Google Scholar

Buhling, F., Rocken, C., Brasch, F., Hartig, R., Yasuda, Y., Saftig, P., Bromme, D., and Welte, T. (2004). Pivotal role of cathepsin K in lung fibrosis. Am. J. Pathol.164, 2203–2216.10.1016/S0002-9440(10)63777-7Suche in Google Scholar

Buhling, F., Wille, A., Rocken, C., Wiesner, O., Baier, A., Meinecke, I., Welte, T., and Pap, T. (2005). Altered expression of membrane-bound and soluble CD95/Fas contributes to the resistance of fibrotic lung fibroblasts to FasL induced apoptosis. Respir. Res.6, 37.10.1186/1465-9921-6-37Suche in Google Scholar PubMed PubMed Central

Buttle, D.J., Abrahamson, M., Burnett, D., Mort, J.S., Barrett, A.J., Dando, P.M., and Hill, S.L. (1991). Human sputum cathepsin B degrades proteoglycan, is inhibited by α2-macroglobulin and is modulated by neutrophil elastase cleavage of cathepsin B precursor and cystatin C. Biochem. J.276, 325–331.10.1042/bj2760325Suche in Google Scholar

Castranova, V. and Vallyathan, V. (2000). Silicosis and coal workers' pneumoconiosis. Environ. Health Perspect.108 (Suppl. 4), 675–684.Suche in Google Scholar

Chang, J.C., Lesser, M., Yoo, O.H., and Orlowski, M. (1986). Increased cathepsin B-like activity in alveolar macrophages and bronchoalveolar lavage fluid from smokers. Am. Rev. Respir. Dis.134, 538–541.Suche in Google Scholar

Chao, S.K., Hamilton, R.F., Pfau, J.C., and Holian, A. (2001). Cell surface regulation of silica-induced apoptosis by the SR-A scavenger receptor in a murine lung macrophage cell line (MH-S). Toxicol. Appl. Pharmacol.174, 10–16.10.1006/taap.2001.9190Suche in Google Scholar

Chapman, H.A. Jr. and Shi, G.P. (2000). Protease injury in the development of COPD. Chest117, 295S–299S.10.1378/chest.117.5_suppl_1.295SSuche in Google Scholar

Chapman, H.A., Riese, R.J., and Shi, G.P. (1997). Emerging roles for cysteine proteases in human biology. Annu. Rev. Physiol.59, 63–88.10.1146/annurev.physiol.59.1.63Suche in Google Scholar

Davidson, J.M. (1990). Biochemistry and turnover of lung interstitium. Eur. Respir. J.3, 1048–1063.10.1183/09031936.93.03091048Suche in Google Scholar

Denault, J.B. and Salvesen, G.S. (2002). Caspases: keys in the ignition of cell death. Chem. Rev.102, 4489–4500.10.1021/cr010183nSuche in Google Scholar

DosReis, G.A., Borges, V.M., and Zin, W.A. (2004). The central role of Fas-ligand cell signaling in inflammatory lung diseases. J. Cell. Mol. Med.8, 285–293.10.1111/j.1582-4934.2004.tb00318.xSuche in Google Scholar

Everts, V., van der Zee, E., Creemers, L., and Beertsen, W. (1996). Phagocytosis and intracellular digestion of collagen, its role in turnover and remodelling. Histochem. J.28, 229–245.10.1007/BF02409011Suche in Google Scholar

Feng, G.H., Bailin, T., Oh, J., and Spritz, R.A. (1997). Mouse pale ear (ep) is homologous to human Hermansky-Pudlak syndrome and contains a rare ‘AT-AC’ intron. Hum. Mol. Genet.6, 793–697.10.1093/hmg/6.5.793Suche in Google Scholar

Ferri, K.F. and Kroemer, G. (2001). Organelle-specific initiation of cell death pathways. Nat. Cell Biol.3, 255–263.10.1038/ncb1101-e255Suche in Google Scholar

Fubini, B. and Hubbard, A. (2003). Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis. Free Radic. Biol. Med.34, 1507–1516.10.1016/S0891-5849(03)00149-7Suche in Google Scholar

Fuentes-Prior, P. and Salvesen, G.S. (2004). The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem. J.384, 201–232.10.1042/BJ20041142Suche in Google Scholar

Garnero, P., Borel, O., Byrjalsen, I., Ferreras, M., Drake, F.H., McQueney, M.S., Foged, N.T., Delmas, P.D., and Delaisse, J.M. (1998). The collagenolytic activity of cathepsin K is unique among mammalian proteinases. J. Biol. Chem.273, 32347–32352.10.1074/jbc.273.48.32347Suche in Google Scholar

Guicciardi, M.E., Deussing, J., Miyoshi, H., Bronk, S.F., Svingen, P.A., Peters, C., Kaufmann, S.H., and Gores, G.J. (2000). Cathepsin B contributes to TNF-α-mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c. J. Clin. Invest.106, 1127–1137.10.1172/JCI9914Suche in Google Scholar

Guttentag, S., Robinson, L., Zhang, P., Brasch, F., Buhling, F., and Beers, M. (2003). Cysteine protease activity is required for surfactant protein B processing and lamellar body genesis. Am. J. Respir. Cell. Mol. Biol.28, 69–79.10.1165/rcmb.2002-0111OCSuche in Google Scholar

Hannothiaux, M.H., Scharfman, A., Wastiaux, A., Cornu, L., van Brussel, E., Lafitte, J.J., Sebastien, P., and Roussel, P. (1991). An attempt to evaluate lung aggression in monkey silicosis: hydrolases, peroxidase and antiproteases activities in serial bronchoalveolar lavages. Eur. Respir. J.4, 191–204.10.1183/09031936.93.04020191Suche in Google Scholar

Heidtmann, H.H., Salge, U., Havemann, K., Kirschke, H., and Wiederanders, B. (1993). Secretion of a latent, acid activatable cathepsin L precursor by human non-small cell lung cancer cell lines. Oncol. Res.5, 441–451.Suche in Google Scholar

Henskens, Y.M., Veerman, E.C., and Nieuw Amerongen, A.V. (1996). Cystatins in health and disease. Biol. Chem. Hoppe-Seyler377, 71–86.Suche in Google Scholar

Hermansky, F. and Pudlak, P. (1959). Albinism associated with hemorrhagic diathesis and unusual pigmented reticular cells in the bone marrow: report of two cases with histochemical studies. Blood14, 162–169.10.1182/blood.V14.2.162.162Suche in Google Scholar

Ishii, Y., Hashizume, Y., Watanabe, T., Waguri, S., Sato, N., Yamamoto, M., Hasegawa, S., Kominami, E., and Uchiyama, Y. (1991). Cysteine proteinases in bronchoalveolar epithelial cells and lavage fluid of rat lung. J. Histochem. Cytochem.39, 461–468.10.1177/39.4.2005374Suche in Google Scholar

Ivy, G.O., Kanai, S., Ohta, M., Smith, G., Sato, Y., Kobayashi, M., and Kitani, K. (1989). Lipofuscin-like substances accumulate rapidly in brain, retina and internal organs with cysteine protease inhibition. Adv. Exp. Med. Biol.266, 31–45.Suche in Google Scholar

Iyer, R. and Holian, A. (1997). Involvement of the ICE family of proteases in silica-induced apoptosis in human alveolar macrophages. Am. J. Physiol.273, L760–767.10.1152/ajplung.1997.273.4.L760Suche in Google Scholar

Iyer, R., Hamilton, R.F., Li, L., and Holian, A. (1996). Silica-induced apoptosis mediated via scavenger receptor in human alveolar macrophages. Toxicol. Appl. Pharmacol.141, 84–92.10.1016/S0041-008X(96)80012-3Suche in Google Scholar

Johnson, D.A., Barrett, A.J., and Mason, R.W. (1986). Cathepsin L inactivates a1-proteinase inhibitor by cleavage in the reactive site region. J. Biol. Chem.261, 14748–14751.10.1016/S0021-9258(18)66935-2Suche in Google Scholar

Langley, R.J., Kalra, R., Mishra, N.C., Hahn, F.F., Razani-Boroujerdi, S., Singh, S.P., Benson, J.M., Pena-Philippides, J.C., Barr, E.B., and Sopori, M.L. (2004). A biphasic response to silica: I. Immunostimulation is restricted to the early stage of silicosis in Lewis rats. Am. J. Respir. Cell. Mol. Biol.30, 823–829.Suche in Google Scholar

Lecaille, F., Kaleta, J., and Bromme, D. (2002). Human and parasitic papain-like cysteine proteases: their role in physiology and pathology and recent developments in inhibitor design. Chem. Rev.102, 4459–4488.10.1021/cr0101656Suche in Google Scholar PubMed

Lesser, M., Padilla, M.L., and Cardozo, C. (1992). Induction of emphysema in hamsters by intratracheal instillation of cathepsin B. Am. Rev. Respir. Dis.145, 661–668.10.1164/ajrccm/145.3.661Suche in Google Scholar

Luthgens, K., Ebert, W., Trefz, G., Gabrijelcic, D., Turk, V., and Lah, T. (1993). Cathepsin B and cysteine proteinase inhibitors in bronchoalveolar lavage fluid of lung cancer patients. Cancer Detect. Prev.17, 387–397.Suche in Google Scholar

Majerle, A. and Jerala, R. (2003). Protein inhibitors form complexes with procathepsin L and augment cleavage of the propeptide. Arch. Biochem. Biophys.417, 53–58.10.1016/S0003-9861(03)00319-9Suche in Google Scholar

Mossman, B.T. and Churg, A. (1998). Mechanisms in the pathogenesis of asbestosis and silicosis. Am. J. Respir. Crit. Care Med.157, 1666–1680.10.1164/ajrccm.157.5.9707141Suche in Google Scholar

Oh, J., Bailin, T., Fukai, K., Feng, G.H., Ho, L., Mao, J.I., Frenk, E., Tamura, N., and Spritz, R.A. (1996). Positional cloning of a gene for Hermansky-Pudlak syndrome, a disorder of cytoplasmic organelles. Nat. Genet.14, 300–306.10.1038/ng1196-300Suche in Google Scholar

Ohashi, K., Naruto, M., Nakaki, T., and Sano, E. (2003). Identification of interleukin-8 converting enzyme as cathepsin L. Biochim. Biophys. Acta1649, 30–39.10.1016/S1570-9639(03)00152-3Suche in Google Scholar

Owen, C.A. and Campbell, E.J. (1999a). The cell biology of leukocyte-mediated proteolysis. J. Leukoc. Biol.65, 137–150.10.1002/jlb.65.2.137Suche in Google Scholar

Owen, C.A. and Campbell, E.J. (1999b). Extracellular proteolysis: new paradigms for an old paradox. J. Lab. Clin. Med.134, 341–351.10.1016/S0022-2143(99)90148-8Suche in Google Scholar

Perdereau, C., Godat, E., Maurel, M.C., Hazouard, E., Diot, E., and Lalmanach, G. (2006). Cysteine cathepsins in human silicotic bronchoalveolar lavage fluids. Biochim. Biophys. Acta1762, 351–356.10.1016/j.bbadis.2005.10.005Suche in Google Scholar

Perez-Ramos, J., de Lourdes Segura-Valdez, M., Vanda, B., Selman, M., and Pardo, A. (1999). Matrix metalloproteinases 2, 9, and 13, and tissue inhibitors of metalloproteinases 1 and 2 in experimental lung silicosis. Am. J. Respir. Crit. Care Med.160, 1274–1282.10.1164/ajrccm.160.4.9808006Suche in Google Scholar

Pettus, B.J., Chalfant, C.E., and Hannun, Y.A. (2002). Ceramide in apoptosis: an overview and current perspectives. Biochim. Biophys. Acta1585, 114–125.10.1016/S1388-1981(02)00331-1Suche in Google Scholar

Porter, D.W., Ye, J., Ma, J., Barger, M., Robinson, V.A., Ramsey, D., McLaurin, J., Khan, A., Landsittel, D., Teass, A., and Castranova, V. (2002). Time course of pulmonary response of rats to inhalation of crystalline silica: NF-κB activation, inflammation, cytokine production, and damage. Inhal. Toxicol.14, 349–367.10.1080/08958370252870998Suche in Google Scholar

Punturieri, A., Filippov, S., Allen, E., Caras, I., Murray, R., Reddy, V., and Weiss, S.J. (2000). Regulation of elastinolytic cysteine proteinase activity in normal and cathepsin K-deficient human macrophages. J. Exp. Med.192, 789–799.10.1084/jem.192.6.789Suche in Google Scholar

Reddy, V.Y., Zhang, Q.Y., and Weiss, S.J. (1995). Pericellular mobilization of the tissue-destructive cysteine proteinases, cathepsins B, L, and S, by human monocyte-derived macrophages. Proc. Natl. Acad. Sci. USA92, 3849–3853.10.1073/pnas.92.9.3849Suche in Google Scholar

Reilly, J.J. Jr., Chen, P., Sailor, L.Z., Wilcox, D., Mason, R.W., and Chapman, H.A. Jr. (1991). Cigarette smoking induces an elastolytic cysteine proteinase in macrophages distinct from cathepsin L. Am. J. Physiol.261, L41–88.10.1152/ajplung.1991.261.2.L41Suche in Google Scholar

Rosenman, K.D., Moore-Fuller, M., and Reilly, M.J. (1999). Connective tissue disease and silicosis. Am. J. Ind. Med.35, 375–381.10.1002/(SICI)1097-0274(199904)35:4<375::AID-AJIM8>3.0.CO;2-ISuche in Google Scholar

Salvesen, G.S. and Abrams, J.M. (2004). Caspase activation-stepping on the gas or releasing the brakes? Lessons from humans and flies. Oncogene23, 2774–2784.10.1038/sj.onc.1207522Suche in Google Scholar

Sarih, M., Souvannavong, V., Brown, S.C., and Adam, A. (1993). Silica induces apoptosis in macrophages and the release of interleukin-1α and interleukin-1β. J. Leukoc. Biol.54, 407–413.10.1002/jlb.54.5.407Suche in Google Scholar

Scabilloni, J.F., Wang, L., Antonini, J.M., Roberts, J.R., Castranova, V., and Mercer, R.R. (2005). Matrix metalloproteinase induction in fibrosis and fibrotic nodule formation due to silica inhalation. Am. J. Physiol. Lung Cell. Mol. Physiol.288, L709–L717.10.1152/ajplung.00034.2004Suche in Google Scholar

Serveau-Avesque, C., Ferrer-Di Martino, M., Herve-Grepinet, V., Hazouard, E., Gauthier, F., Diot, E., and Lalmanach, G. (2006). Active cathepsins B, H, K, L and S in human inflammatory bronchoalveolar lavage fluids. Biol. Cell98, 15–22.10.1042/BC20040512Suche in Google Scholar

Shangary, S., Lerner, E.C., Zhan, Q., Corey, S.J., Smithgall, T.E., and Baskaran, R. (2003). Lyn regulates the cell death response to ultraviolet radiation through c-Jun N terminal kinase-dependent Fas ligand activation. Exp. Cell. Res.289, 67–76.10.1016/S0014-4827(03)00234-9Suche in Google Scholar

Shapiro, S.D. (2002). Proteinases in chronic obstructive pulmonary disease. Biochem. Soc. Trans.30, 98–102.10.1042/bst0300098Suche in Google Scholar

Shen, H.M., Zhang, Z., Zhang, Q.F., and Ong, C.N. (2001). Reactive oxygen species and caspase activation mediate silica-induced apoptosis in alveolar macrophages. Am. J. Physiol. Lung Cell. Mol. Physiol.280, L10–L17.10.1152/ajplung.2001.280.1.L10Suche in Google Scholar

Shi, G.P., Bryant, R.A., Riese, R., Verhelst, S., Driessen, C., Li, Z., Bromme, D., Ploegh, H.L., and Chapman, H.A. (2000). Role for cathepsin F in invariant chain processing and major histocompatibility complex class II peptide loading by macrophages. J. Exp. Med.191, 1177–1186.10.1084/jem.191.7.1177Suche in Google Scholar

Steenland, K. and Goldsmith, D.F. (1995). Silica exposure and autoimmune diseases. Am. J. Ind. Med.28, 603–608.10.1002/ajim.4700280505Suche in Google Scholar

Stockley, R.A. (1999). Neutrophils and protease/antiprotease imbalance. Am. J. Respir. Crit. Care Med.160, S49–S52.10.1164/ajrccm.160.supplement_1.13Suche in Google Scholar

Stoka, V., Turk, B., Schendel, S.L., Kim, T.H., Cirman, T., Snipas, S.J., Ellerby, L.M., Bredesen, D., Freeze, H., Abrahamson, M., et al. (2001). Lysosomal protease pathways to apoptosis. Cleavage of bid, not pro-caspases, is the most likely route. J. Biol. Chem.276, 3149–3157.10.1074/jbc.M008944200Suche in Google Scholar

Taggart, C., Cervantes-Laurean, D., Kim, G., McElvaney, N.G., Wehr, N., Moss, J., and Levine, R.L. (2000). Oxidation of either methionine 351 or methionine 358 in α1-antitrypsin causes loss of anti-neutrophil elastase activity. J. Biol. Chem.275, 27258–27265.10.1016/S0021-9258(19)61505-XSuche in Google Scholar

Taggart, C.C., Lowe, G.J., Greene, C.M., Mulgrew, A.T., O'Neill, S.J., Levine, R.L., and McElvaney, N.G. (2001). Cathepsin B, L, and S cleave and inactivate secretory leucoprotease inhibitor. J. Biol. Chem.276, 33345–33352.10.1074/jbc.M103220200Suche in Google Scholar PubMed

Taggart, C.C., Greene, C.M., Smith, S.G., Levine, R.L., McCray, P.B. Jr., O'Neill, S., and McElvaney, N.G. (2003). Inactivation of human b-defensins 2 and 3 by elastolytic cathepsins. J. Immunol.171, 931–937.10.4049/jimmunol.171.2.931Suche in Google Scholar PubMed

Takahashi, H., Ishidoh, K., Muno, D., Ohwada, A., Nukiwa, T., Kominami, E., and Kira, S. (1993). Cathepsin L activity is increased in alveolar macrophages and bronchoalveolar lavage fluid of smokers. Am. Rev. Respir. Dis.147, 1562–1568.10.1164/ajrccm/147.6_Pt_1.1562Suche in Google Scholar PubMed

Takeyabu, K., Betsuyaku, T., Nishimura, M., Yoshioka, A., Tanino, M., Miyamoto, K., and Kawakami, Y. (1998). Cysteine proteinases and cystatin C in bronchoalveolar lavage fluid from subjects with subclinical emphysema. Eur. Respir. J.12, 1033–1039.10.1183/09031936.98.12051033Suche in Google Scholar

Thibodeau, M., Giardina, C., and Hubbard, A.K. (2003). Silica-induced caspase activation in mouse alveolar macrophages is dependent upon mitochondrial integrity and aspartic proteolysis. Toxicol. Sci.76, 91–101.10.1093/toxsci/kfg178Suche in Google Scholar

Thibodeau, M.S., Giardina, C., Knecht, D.A., Helble, J., and Hubbard, A.K. (2004). Silica-induced apoptosis in mouse alveolar macrophages is initiated by lysosomal enzyme activity. Toxicol. Sci.80, 34–48.10.1093/toxsci/kfh121Suche in Google Scholar

Thome, M. and Tschopp, J. (2001). Regulation of lymphocyte proliferation and death by FLIP. Nat. Rev. Immunol.1, 50–58.10.1038/35095508Suche in Google Scholar

Thornberry, N.A., Bull, H.G., Calaycay, J.R., Chapman, K.T., Howard, A.D., Kostura, M.J., Miller, D.K., Molineaux, S.M., Weidner, J.R., Aunins, J., et al. (1992). A novel heterodimeric cysteine protease is required for interleukin-1β processing in monocytes. Nature356, 768–774.10.1038/356768a0Suche in Google Scholar

Tomita, K., Caramori, G., Lim, S., Ito, K., Hanazawa, T., Oates, T., Chiselita, I., Jazrawi, E., Chung, K.F., Barnes, P.J., and Adcock, I.M. (2002). Increased p21(CIP1/WAF1) and B cell lymphoma leukemia-x(L) expression and reduced apoptosis in alveolar macrophages from smokers. Am. J. Respir. Crit. Care Med.166, 724–731.10.1164/rccm.2104010Suche in Google Scholar

Travis, J. and Salvesen, G.S. (1983). Human plasma proteinase inhibitors. Annu. Rev. Biochem.52, 655–709.10.1146/annurev.bi.52.070183.003255Suche in Google Scholar

Turk, V. and Bode, W. (1991). The cystatins: protein inhibitors of cysteine proteinases. FEBS Lett.285, 213–219.10.1016/0014-5793(91)80804-CSuche in Google Scholar

Turk, B., Turk, D., and Turk, V. (2000). Lysosomal cysteine proteases: more than scavengers. Biochim. Biophys. Acta1477, 98–111.10.1016/S0167-4838(99)00263-0Suche in Google Scholar

Turk, V., Turk, B., and Turk, D. (2001). Lysosomal cysteine proteases: facts and opportunities. EMBO J.20, 4629–4633.10.1093/emboj/20.17.4629Suche in Google Scholar PubMed PubMed Central

Ueki, A., Isozaki, Y., and Kusaka, M. (2005). Anti-caspase-8 autoantibody response in silicosis patients is associated with HLA-DRB1, DQB1 and DPB1 alleles. J. Occup. Health47, 61–67.10.1539/joh.47.61Suche in Google Scholar PubMed

Ulbricht, B., Hagmann, W., Ebert, W., and Spiess, E. (1996). Differential secretion of cathepsins B and L from normal and tumor human lung cells stimulated by 12(S)-hydroxy-eicosatetraenoic acid. Exp. Cell. Res.226, 255–263.10.1006/excr.1996.0226Suche in Google Scholar PubMed

Van den Brule, S., Misson, P., Buhling, F., Lison, D., and Huaux, F. (2005). Overexpression of cathepsin K during silica-induced lung fibrosis and control by TGF-β. Respir. Res.6, 84.10.1186/1465-9921-6-84Suche in Google Scholar PubMed PubMed Central

Vanhee, D., Gosset, P., Boitelle, A., Wallaert, B., and Tonnel, A.B. (1995). Cytokines and cytokine network in silicosis and coal workers' pneumoconiosis. Eur. Respir. J.8, 834–842.10.1183/09031936.95.08050834Suche in Google Scholar

Wang, Z., Zheng, T., Zhu, Z., Homer, R.J., Riese, R.J., Chapman, H.A. Jr., Shapiro, S.D., and Elias, J.A. (2000). Interferon γ induction of pulmonary emphysema in the adult murine lung. J. Exp. Med.192, 1587–1600.10.1084/jem.192.11.1587Suche in Google Scholar PubMed PubMed Central

Wolters, P.J. and Chapman, H.A. (2000). Importance of lysosomal cysteine proteases in lung disease. Respir. Res.1, 170–177.10.1186/rr29Suche in Google Scholar PubMed PubMed Central

Yasuda, Y., Li, Z., Greenbaum, D., Bogyo, M., Weber, E., and Bromme, D. (2004). Cathepsin V, a novel and potent elastolytic activity expressed in activated macrophages. J. Biol. Chem.279, 36761–36770.10.1074/jbc.M403986200Suche in Google Scholar PubMed

Yayoi, Y., Ohsawa, Y., Koike, M., Zhang, G., Kominami, E., and Uchiyama, Y. (2001). Specific localization of lysosomal aminopeptidases in type II alveolar epithelial cells of the rat lung. Arch. Histol. Cytol.64, 89–97.10.1679/aohc.64.89Suche in Google Scholar PubMed

Yoshioka, Y., Kumasaka, T., Ishidoh, K., Kominami, E., Mitani, K., Hosokawa, Y., and Fukuchi, Y. (2004). Inflammatory response and cathepsins in silica-exposed Hermansky-Pudlak syndrome model pale ear mice. Pathol. Int.54, 322–331.10.1111/j.1440-1827.2004.01626.xSuche in Google Scholar PubMed

Zheng, T., Zhu, Z., Wang, Z., Homer, R.J., Ma, B., Riese, R.J. Jr., Chapman, H.A. Jr., Shapiro, S.D., and Elias, J.A. (2000). Inducible targeting of IL-13 to the adult lung causes matrix metalloproteinase- and cathepsin-dependent emphysema. J. Clin. Invest.106, 1081–1093.10.1172/JCI10458Suche in Google Scholar PubMed PubMed Central

Published Online: 2006-07-20
Published in Print: 2006-07-01

©2006 by Walter de Gruyter Berlin New York

Artikel in diesem Heft

  1. 4th General Meeting of the International Proteolysis Society/International Conference on Protease Inhibitors
  2. Extracellular granzymes: current perspectives
  3. Impact of the N-terminal amino acid on targeted protein degradation
  4. Structural aspects of recently discovered viral deubiquitinating activities
  5. Cysteine cathepsins and caspases in silicosis
  6. The proprotein convertases and their implication in sterol and/or lipid metabolism
  7. PREPL: a putative novel oligopeptidase propelled into the limelight
  8. Human cathepsin L rescues the neurodegeneration and lethality in cathepsin B/L double-deficient mice
  9. Helicobacter pylori-induced downregulation of the secretory leukocyte protease inhibitor (SLPI) in gastric epithelial cell lines and its functional relevance for H. pylori-mediated diseases
  10. Increased local levels of granulocyte colony-stimulating factor are associated with the beneficial effect of pre-elafin (SKALP/trappin-2/WAP3) in experimental emphysema
  11. Interaction of a novel form of Pseudomonas aeruginosa alkaline protease (aeruginolysin) with interleukin-6 and interleukin-8
  12. Analysis of aldosterone-induced differential receptor-independent protein patterns using 2D-electrophoresis and mass spectrometry
  13. Modeling the 3D structure of wheat subtilisin/chymotrypsin inhibitor (WSCI). Probing the reactive site with two susceptible proteinases by time-course analysis and molecular dynamics simulations
  14. A stable analogue of glucose-dependent insulinotropic polypeptide, GIP(LysPAL16), enhances functional differentiation of mouse embryonic stem cells into cells expressing islet-specific genes and hormones
  15. Transcription factor FOXM1c is repressed by RB and activated by cyclin D1/Cdk4
  16. Despite its strong transactivation domain, transcription factor FOXM1c is kept almost inactive by two different inhibitory domains
  17. Inhibition of calcineurin by infusion of CsA causes hyperphosphorylation of tau and is accompanied by abnormal behavior in mice
  18. Isolation and properties of extracellular proteinases of Penicillium marneffei
  19. Isolation and comparative characterization of Ki-67 equivalent antibodies from the HuCAL® phage display library
Heruntergeladen am 7.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/BC.2006.109/html
Button zum nach oben scrollen