Starting from an analytical macroscopic/phenomenological model yielding the self-bias voltage as a function of the absorbed radio-frequency (rf) power of an asymmetric capacitively coupled discharge in NF3 this paper studies the dependence of the ion flux onto the powered electrode on the gas pressure. An essential feature of the model is the assumption that the ions' drift velocity in the sheath near the powered electrode is proportional to E α, where E=−ΔU (U being the self-bias potential), and α is a coefficient depending on the gas pressure and cross section of elastic ion-neutral collisions. The model also considers the role of γ-electrons, stochastic heating as well as the contribution of the active electron current to the global discharge power balance. Numerically solving the model's basic equations one can extract the magnitude of the ion flux (at three different gas pressures) in a technological etching device (Alcatel GIR 220) by using easily measurable quantities, notably the self-bias voltage and absorbed rf power.
Inhalt
-
Open AccessIon flux's pressure dependence in an asymmetric capacitively coupled rf discharge in NF31. März 2004
-
1. März 2004
-
Open AccessIs there the radion in the RS2 model?1. März 2004
-
1. März 2004
-
1. März 2004
-
1. März 2004
-
1. März 2004
-
Open AccessFullerenes as polyradicals1. März 2004
-
1. März 2004
-
Open AccessA system of units compatible with geometry1. März 2004
-
Open AccessCritical fields of a superconducting cylinder1. März 2004