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Critical ¯elds of a superconducting cylinder
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Abstract: The self-consistent solutions of the nonlinear Ginzburg{Landau equations,

which describe the behavior of a superconducting mesoscopic cylinder in an axial magnetic

­ eld H (provided there are no vortices inside the cylinder), are studied. Di¬erent vortex-

free states (M-, e-, d-, p-), which exist in a superconducting cylinder, are described. The

critical ­ elds (H1, H2, Hp, Hi, Hr), at which the ­ rst or second order phase transitions

between di¬erent states of the cylinder occur, are found as functions of the cylinder

radius R and the GL-parameter {. The boundary {c(R), which divides the regions of

the ­ rst and second order (s; n)-transitions in the icreasing ­ eld, is found. It is found

that at R ! 1 the critical value is {c = 0:93. The hysteresis phenomena, which appear

when the cylinder passes from the normal to superconducting state in the decreasing

­ eld, are described. The connection between the self-consistent results and the linearized

theory is discussed. It is shown that in the limiting case { ! 1=
p

2 and R ¾ ¶ ( ¶ is

the London penetration length) the self-consistent solution (which correponds to the so-

called metastable p-state) coincides with the analitic solution found from the degenerate

Bogomolnyi equations. The reason for the existence of two critical GL-parameters {0 =

0:707 and {c = 0:93 in bulk superconductors is discussed.
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1 Introduction

According to the macroscopic Ginzburg{Landau theory [1] all superconductors can be

divided in two groups (or types) corresponding to the magnitude of their material pa-

rameter { [{ < {0 (type-I), or { > {0 (type-II), where {0 = 1=
p

2 = 0:707]. Such division

re°ects the fact that the surface free energy ¾ns vanishes (if { = {0 [1]) at the interface

between two semi-in¯nite metallic phases (normal, n-, and superconducting, s-), which
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are in equilibrium in a magnetic ¯eld. For { > {0 the value ¾ns > 0, which points to the

instability of the n-phase relative to the formation of the s-phase inside the bulk type-I

superconductor. The existence of the critical parameter {0 is mentiond in all text books

[2{5] as the important result of the GL-theory.

We recall, however, that the value {0 = 1=
p

2 was found in [1] for the in¯nite sys-

tem (assuming no vortices inside the superconductor). In the case of a ¯nite dimension

superconductor the situation turns out to be much more complicated. For instance, the

behavior of a plate [6] of su±ciently small thickness D in a magnetic ¯eld H (even in the

simplest vortex-free state) is far from trivial. Basing on the self-consistent solutions of

the GL-equations [6], the thickness-dependent critical parameter {c(D) was found (with

{c(D) ! 0:93 when D ! 1), which separates two groups (or classes) of the behav-

ior of the plate magnetization M (H) (we use the notation B = H + 4¼M , where B is

the mean ¯eld value in the specimen, H is the external ¯eld). For { < {c(D) (i.e., in

class-I superconductors) the plate magnetization vanishes abruptly at some ¯eld H1 (by

a ¯rst order transition from s- to n-state, if the ¯eld H increases). For { > {c(D) (i.e.,

in class-II superconductors) a second order phase transition takes place. The hysteresis

phenomena, which accompany the plate transitions from n- to s-states in a decreasing

¯eld H , were also studied. It was shown, that in a ¯eld decreasing regime there exists

another D-dependent GL-parameter, which for large D coincides with { = 1=
p

2. In

addition, the critical ¯elds H1, H2, Hp and Hr were also found, which correspond to the

transitions between di®erent possible states of the plate (such as e-, d-, p-, M-, n-states

[6, 7]).

In the present paper the corresponding study is made for a long superconducting

cylynder of radius R, placed in an axial magnetic ¯eld H . The behavior of the cylinder

and the plate in the vortex-free state are qualitatively analogous. Moreover, the cylinder’s

geometry was already considered in [8{11]; however, some essential details of the general

picture in [8{11] are missing. The main attention is devoted below to the questions not

discussed earlier; to facilitate the reading of the paper and set the problem in context

some important concepts for the understanding will be brie°y recalled.

2 Equations

The GL-equations for the order parameter Ã and ’-component of the potential vector A

can be written in the cylidrical co-ordinate system (r; ’; z) in a form

d2a

d½2
¡ 1

½

da

d½
¡ Ã2

{2
a = 0; (1)

d2Ã

d½2
+

1

½

dÃ

d½
+ (Ã ¡ Ã3) ¡ a2

½2
Ã = 0: (2)

Here Ã(½) is a real function (0 µ Ã µ 1), ½ = r=» is a dimensionless co-ordinate, a(½) is
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the dimensionless magnetic ¯eld potential, while

A = »H»
a

½
; b =

B

H»

=
1

½

da

d½
; H» =

Á0

2¼»2
;

» is the coherence length, ¸ = {» is the London penetration depth, { is the GL-parameter,

H» is the unity for measuring the ¯eld, Á0 = hc=2e is the °ux quantum. The boundary

conditions to Eqs. (1), (2) are

aj½=0 = 0;
1

½

da

d½

¯̄
¯̄
¯
½=R ¹

= h»; (3)

dÃ

d½

¯̄
¯̄
¯
½=0

= 0;
dÃ

d½

¯̄
¯̄
¯
½=R¹

= 0; (4)

where R» = R=» and h» = H=H». The magnetic moment (or the cylinder magnetization)

M» = M=H» is found from the formula b = h» + 4¼M», where b = B=H» = 2a(R»)=R2
» ,

the overline means the averaging over the specimen volume.

The di®erence of the Gibbs free energies in superconducting and normal states, ¢g

[related to the unity volume and normalized by H 2
cb=8¼, where Hcb = Á0=(2¼

p
2¸»)], is

expressed through the system magnetic moment [12]:

¢g = g0 ¡ 4¼M»; (5)

g0 =
2

R2
»

Z R ¹

0
½d½

2
4Ã4 ¡ 2Ã2 +

Ã
dÃ

d½

!2
3
5 :

In the case Ã ½ 1 and B = H the equations (1) and (2) reduce [13, 14] to a single

linear equation
d2Ã

d½2
+

1

½

dÃ

d½
+

Ã
1 ¡ h2

»

½2

4

!
Ã = 0; (6)

solutions of which does not depend on { and can be expressed in terms of the hypergeo-

metric functions (the Kummer functions).

Notice, that in (1){(5) » is chosen as the unity of length, however, one can use ¸ = {»

instead, and the ¯eld H¸ = Á0=(2¼¸2) = H»={2 as the unity (or, for instance, H{ =

Á0=(2¼¸») = H»={, or thermodinamic ¯eld Hcb = H»=
p

2{). In presenting the results of

the calculations (in Sections 3 and 4) we shall use mixed normalization, chosing ¸ as the

unit of length and H» as the unit of ¯eld. The results of calculations do not depend on

the choice of the concrete numerical algorithm.

3 The state diagram

The solutions a(½) and Ã(½) of Eqs. (1){(4) depend on the three parameters: {, R» and

h». The main results of calculations are presented in Fig. 1, where the state diagram of

the cylinder is depicted on the plane of the variables (R¸; {). To every point of this plane
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corresponds some solution (or the state) of the system (1){(4), Ã(½; h») and a(½; h») ,

which shows how the cylinder state at this point changes with the ¯eld H . By studying

these dependencies one can ¯nd ¯ve characterictic regions (denoted in Fig. 1 as Ia, Ib,

IIa, IIb and IIc) and four critical lines (denoted as ¼, SI¡II, ³ and ³i), which merge at

the point G into a single curve. This picture is analogous to the state diagram of the

plate (see Fig. 1 in Ref. [6]). In the corresponding state diagram of the cylinder (see

Fig. 1 in Ref. [8]) the critical lines ¼ and ³i are missing, but as a whole this ¯gure is also

analogous. To avoid excesive repetitions we refer the reader to Refs. [6, 8] for details.

Here we remind only, that every superconducting state can be obtained in two ways:

either s-state is reached ¯rstly in the absence of the external ¯eld, which then increases

(the ¯eld increase regime, FI); or the specimen is originally in the n-state (at T < Tc) in

a strong ¯eld, which then diminishes and the specimen passes into the s-state (the ¯eld

decrease regime, FD). Depending on the chosen regime the di®erent states at the same

¯eld H may be realized, i.e. the hysteresis is possible.

[The solutions in FI-regime were found by the iteration method [15], starting with the

trial function Ã(x) = 1:0; in FD-regime this trial function was chosen as Ã(x) = 10¡3.

Solutions found in this way are stable with relatively small perturbations in their shape.

In the hysteresis region there also exists the absolutely unstable branch of solutions

(having positive time-increment), which can not be found by our method.]

In FI-regime in regions Ia and Ib in Fig. 1 the Meissner M-state (with Ã º 1) is

completely destroyed by a ¯rst order jump to n-state in some ¯eld h1, accompanied

by a jump in the cylinder magnetization. In region IIa the M-state is at ¯rst partially

destroyed (in the ¯eld h1) by a ¯rst order jump transformation into a superconducting

e-state [9, 10], which ¯nally vanishes by a second order phase transition (in the ¯eld h2).

In region IIb the superconductivity is destroyed without jumps by a second order phase

transition, however, the magnetization curve, ¡ 4¼M (H), has in this region the in°exion

point (the so-called i-states). In region IIc the magnetization vanishes monotonously,

having no in°exion points. Thus, the curve SI¡II in Fig. 1 divides the regions of ¯rst

and second order phase transitions from s- to n-state in FI-regime. (Notice, that in Ref.

[8] the asymptote of the curve SI¡II at R ! 1 was found to be {c = 0:92, instead of

{c = 0:94 for the plate [6]. After recalculating we found these numbers to be {c = 0:93

in both geometries, as it should be for bulk superconductors).

In the FD-regime in region IIa from the n-state originates ¯rstly the e-state, which

transforms then (with the ¯eld diminishing) into a metastable (hysteretic) d-state [11],

followed by a ¯nal jump restorating the M-state. In regions IIb and IIc the hysteresis

and the jumps are absent. In region Ib the s-state restores from a supercooled n-state

by a second order phase transition into a hysteretic (metastable) p-state [6] with the

following jump into M-state at a ¯eld hr. In region Ia the intermediate p-state does not

form and the transition from a supercooled n-state into M-state happens immediately

by a ¯rst order jump in a ¯eld h¤
r . Thus, the curve ¼ in Fig. 1 marks the boundary

where p-states disappear. The curve ³ marks the boundary, above which d-states exist

(in region IIa), or n- and p-states (in region IIb), or only n-states (in region Ia); above
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³-line the magnetization jumps exist and hysteresis is possible. Below ³-line the jumps

and hysteresis are impossible, but the in°exion points on the magnetization curves remain

(in region IIb). Below ³i-line the magnetization vanishes monotonously, having no points

of in°exion.

For the readers convenience the characteristic behavior of the magnetization, ¡ 4¼M (H),

in di®erent regions of the state diagram is depicted in Fig. 2. One can see here the dif-

ference between the states M-, p-, d-, e-. The state p- forms in FD-regime from n-state

(Fig. 2(b)). The state d- forms in FD-regime from e-state (Fig. 2(d)). The marginal

¹-state (see Fig. 2(c)) belongs to the critical line SI¡II. The di®erence between p- and

d-states vanish on this line, which marks also the points where the supercooled n-state

disappears.

Figs. 3 and 4 illustrate the co-ordinate dependencies Ã(x) and b(x) at di®erent points

of the state diagram in di®erent ¯eld regimes.

Fig. 3 shows the changes in the space shape of the solutions at the ¯rst order jumps

in FI-regime. One can see, in particular, that in class-I superconductors (see Figs. 2(a,b)

and Figs. 3(a,b) for { = 0:8 and R¸ = 7:5) the transition from M- to n-state is a ¯rst

order phase transition (at the ¯eld h1). In class-II superconductors (see Fig. 2(d) and

Figs. 3(c,d) for { = 1:5 and R¸ = 4) the "edge" mechanism of the ¯eld penetration into

the specimen is realized. Here, out of M-state the e-state forms in a jump [9, 10], having

the suppressed values of the order parameter near the cylinder surface, with the external

¯eld penetrating into the mesoscopic cylinder through a layer along its boundary. Only

later the second order phase transition to the n-state occurs ¯nally (at the ¯eld h2). The

dashed line K (with Ã ½ 1) matches the linear equation (6) and can be expressed via

the Kummer functions.

Fig. 4 illustrates the changes in the space pro¯les of the solutions Ã(x) and b(x) in FD-

regime, when the superconductivity restores from the supercooled n-state. One can see

that in class-I superconductors (see Fig. 2(b) and Figs. 4(a,b) for { = 0:8 and R¸ = 7:5)

the superconductivity nucleates from the n-state in a second order phase transition (at

the ¯eld hp), forming the p-state with Ã ½ 1 (the curve K), which developes into the

curve p (Fig. 4(a)) and then (at the ¯eld hr) transforms in a jump into the M-state. In

class-II superconductors (see Fig. 2(d) and Figs. 4(c,d)), with the ¯eld diminishing, the

e-state with Ã ½ 1 nucleates ¯rstly (the curve K), which then transforms gradually into

the d-state (see the curve d in Fig. 4(c)) and passes ¯nally in a jump (at the ¯eld hr)

from d- to M-state.

4 The critical ¯elds (the phase diagrams)

When studying the solutions of the GL-equations in di®erent points of the state diagram,

one can ¯nd, in particular, the critical values of the ¯eld at which the transitions between

di®erent s- and n-states occur. This is illustrated in Fig. 5.

Fig. 5(a) shows the critical ¯elds, which are found when the representation point

(R¸; {) on the state diagram in Fig. 1 moves along the line { = 0:5. Consider, for
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example, the point R¸ = 8, { = 0:5, which belongs to region Ia in Fig. 1, and look what

happens at this point when the ¯eld changes (further we denote h = H=H»). When the

¯eld increases (FI-regime) the superconducting M-state (with Ã º 1) persists up to point

h1 = 2:164 in Fig. 5(a), where the ¯rst order jump into n-state (Ã ² 0) occurs. If the ¯eld

is now decreased (h < h1, FD-regime), the normal state is conserved and a supercooled

(metastable) n-state exists down to the point h¤
r , where the n-state becames absolutely

unstable and the s-state is restored by a ¯rst order jump from n- into M-state (the ¯eld

hr of the jump into M-state is supplied with the index *, if the jump occurs at the point of

absolute instability of the n-state, without forming preliminary the metastable p-state).

In the ¯eld interval ¢n = h1 ¡ h¤
r the supercooled n-state coexists simultaneously with

the M-state, i.e. the hysteresis is possible. One can see, that with R¸ diminishing the

interval ¢n also diminises and at R¸ = 1:7 it vanishes completely (¢n = 0 at point ³

in Fig. 5(a)). [In Fig. 1 the point ³ corresponds the intersection of the line { = 0:5

in region Ia with the curve ³ , which marks the boundary of the hysteresis states.] The

section of the critical curve, which lies below point ³ (in region IIc), corresponds to the

hysteresis-less second order phase transitions (here h1 = hr = h2, see Fig. 2(f)).

Fig. 5(b) shows the critical ¯elds for the case { = 0:8. Here in FI-regime the M-state

loses stability at the ¯eld h1 (at R¸ ¾ 1 the ¯rst order phase transition into the n-

state occurs). In FD-regime the supercooled n-state persists down to the ¯eld hp, where

the superconducting p-state originates by a second order phase transition; the p-state

persists down to the ¯eld hr, where the ¯rst order phase transition into the M-state

occurs (see Fig. 2(b)). The metastable p-states exist in the ¯eld interval ¢p = hp ¡ hr,

which vanish at point ¼ in Fig. 5(b) (R¸ = 4:5). [In Fig. 1 to the point ¼ corresponds

the intersection of the line { = 0:8 with the ¼-boundary of p-states, while to the point

³ (R¸ = 1:9) corresponds the intersection of the line { = 0:8 with the hysteresis ³-

boundary.] For ³ < R¸ < ¼ [in region Ia in Fig. 1] there are no p-states, but in the ¯eld

interval ¢n = h1 ¡ h¤
r the supercooled n-state is still possible, which loses stability and

transforms into M-state by a ¯rst order phase transition, see Fig. 2(a)). For R¸ < ³

(in region IIc) the supercooled n-state is impossible and the transformation from s- into

n-state (and vice-versa) occurs at the critical ¯eld h1 = hp = hr = h2 by a second order

phase transition (see Fig. 2(f)).

Fig. 5(c) shows the critical ¯elds of the superconductor with { = 1. The line { = 1

in Fig. 1 crosses the the critical curves SI¡II, ¼ and ³ in three points: ¹1 (R¸ = 4:4),

¼ (R¸ = 2:5) and ¹2 = G (R¸ = 2:3). This stipulates the complicated behavior of the

critical ¯elds in Fig. 5(c). Indeed, for R¸ > ¹1 (in region IIa) the Meissner state in FI-

regime loses stability ¯rstly at the ¯eld h1 and passes by a jump into the edge-suppressed

e-state, which ¯nally vanishes at the ¯eld h2 > h1 by a second order phase transition into

n-state. In FD-regime the e-state reappears at the ¯eld h2, at the ¯eld h1 it transforms

smoothly into d-state [11], which exists down to the critical ¯eld hr where the jump into

M-state occurs (see Fig. 2(d)). Thus, for R¸ > ¹1 the value { = 1 corresponds to the

class-II superconductor (using the terminology proposed in Ref. [6]).

In Fig. 5(c) at ¼ < R¸ < ¹1 (region Ib in Fig. 1) the same value { = 1 corresponds
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now to the class-I superconductor. Here the M-state remains stable in FI-regime up to

the ¯eld h1, where the ¯rst order jump into n-state occurs. In FD-regime a supercooled

n-state appears at ¯rst, which persists down to the ¯eld hp < h1, where the p-state

originates by a second order phase transition with a subsequent ¯rst order jump into

M-state at the ¯eld hr (see Fig. 2(b)).

In Fig 5(c) at G < R¸ < ¼ (region Ia in Fig. 1, where there are no p-states, but

n-state exists) the value { = 1 corresponds again to the class-I superconductor. Here

the sequence of the emerging states is shown in Fig. 2(a). [The ¯elds h1 and h¤
r in Fig.

5(c) di®er one from another only slightly and they are indistinguishable in the chosen

scale.] For R¸ < G the value { = 1 corresponds again to the class-II superconductors

(the region IIc); here there is only one critical ¯eld h2, at which M-state passes to n-state

(and vice-versa) by a second order phase transition (see Fig. 2(f)). In region IIc there is

no hysteresis and no in°exions on the magnetization curves.

Fig. 5(d) shows the critical ¯elds of the superconductor with { = 1:2. For R¸ >

³ = 2:82 (region IIa in Fig. 1) the M-state loses stability in FI-regime at the ¯eld h1

and by a jump (j) transforms into e-state, which vanishes ¯nally at the ¯eld h2 (see Fig.

2(d)). In FD-regime (at the ¯eld h2) the e-state reappears again from the n-state, and

passes smoothly into the metastable d-state, which ends up at the ¯eld hr by a jump

into the M-state (see Fig. 2(d)). The supercooled n-state in region IIa is impossible.

For ³i < R¸ < ³ (region IIb; here ³i = 1:69) the magnetization has an in°exion point (i)

and two critical ¯elds hi and h2 (see Fig. 2(e)). For R¸ < ³i (in region IIc) there are no

in°exion points and there is only one critical ¯eld h2 (see. Fig. 2(f)).

[Notice, that in the case of a plate [6] (as for a cylinder) below the hysteresis boundary

³ there exist analogous i-states, the boundary ³i and the ctritical ¯elds hi, which are

missing in Ref. [6].]

5 Connection with the linearized theory

The critical ¯elds in Fig. 5 were found by a self-consistent solution of the nonlinear

GL-equations. However, in case of the second order phase transitions (when Ã ! 0) the

GL-equations can be linearized [13, 14] and reduced to a single linear equation (6) for

Ã, which has the solution expressed (in case of a cylinder) through the hypergeometric

Kummer functions. The letter K in Fig. 5 marks the curves of the second order phase

transitions, which can be found using the linearized theory. [Notice, that in co-ordinates

(R»; h») the curves K reduce to a single ({-independent) curve, in accordance with Ref.

[14]]. One can see, however, that the curve K consists, in fact, of several segments

(marked in Fig. 5 by thicker lines), which change with { and have di®erent meaning in

di®erent regions of the state diagram.

Thus, in Fig. 5(a) ({ = 0:5) segment h¤
r of the curve K appears in FD-regime and

corresponds to the points, where the n-state (Ã ² 0) becames absolutely unstable and

a ¯rst order jump into M-state occurs. Segment h2 corresponds to the reversible second

order phase transitions.
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In Fig. 5(b) ({ = 0:8) segment hp of the curve K appears in FD-regime and corre-

sponds to a second order phase transition from n- into p-state (with Ã 6= 0). Segment

h¤
r corresponds in FD-regime to the points of absolute instability of n-states and to a

non-reversible ¯rst order phase transitions from n- into M-state. Segment h2 corresponds

to a reversible second order phase transition (s; n).

In Fig. 5(c) ({ = 1) the upper segment h2 of the curve K (which appears in FI-

regime) marks the end of e-states and corresponds to a second order phase transition

into n-state. Segment hp appears in FD-regime and corresponds to a second order phase

transition from a supercooled n- into p-state. The lower segment h2 corresponds to the

reversible destruction (or origination) of s-state.

In Fig. 5(d) ({ = 1:2) the curve K consists of two segments h2, with the upper

segment marking the boundary of e-states, and the lower { the boundary of existence of

the reversible s-states, which have no in°exion points on the magnetization curve.

[The analogous picture of the critical ¯elds exists in the case of a plate [6] (with

the hypergeometric Weber functions replacing the Kummer functions). Note also, that

in both geometries (for m = 0) the superconductivity originates (with Ã ½ 1) in the

volume, and not only on the specimen surface, see curves K in Figs. 3 and 4.]

The system of nonlinear GL-equations can be reduced to one linear equation also in

the case { ½ {c(R¸), R¸ ¾ 1. Indeed, chosing ¸ as the unit of length and normalizing

the potential A by the formula A(r) = ¸H»~a(x), x = r=¸, one can rewrite Eqs. (1), (2)

in the form
d2~a

dx2
¡ 1

x

d~a

dx
¡ Ã2~a = 0; (7)

d2Ã

dx2
+

1

x

dÃ

dx
+ (Ã ¡ Ã3) ¡ {2 ~a2

x2
Ã = 0: (8)

Neglecting (if { ½ 1) the last term in equation (8) and noticing that Ã = 1 in this case

is a solution of the problem (for R ¾ 1), one can rewrite Eq. (7) in the equivalent form

d2b

dx2
+

1

x

db

dx
¡ b(x) = 0; x =

r

¸
; (9)

where b(x) = x¡1d~a=dx (with H(r) = r¡1dA=dr = H»b(x)). The solution of equation (9)

with the ¯nite value of the ¯eld in the origin of co-ordinates is

b(x) = b0I0(x); I0(x) =
1X

k=0

1

k!¡(k + 1)

µ
x

2

¶2k

; (10)

where I0(x) is the Bessel function of the imaginary argument. The value b0 can not

be found from the linear equation (9), however, the functional dependence of the self-

consistent solution for b(x) is described by the formula (10) for all { ½ 1 and R ¾ ¸.

[In case of a plate with D ¾ ¸ the function I0(x) is replaced by the exponent e¡x.]

6 Connection with a thermodinamic ¯eld Hcb

Among other critical ¯elds in Fig. 5 is also shown a thermodynamic critical ¯eld of a bulk

superconductor Hcb = Á0=(2¼
p

2¸») (in units H» one has hcb = Hcb=H» = (
p

2{)¡1). We
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stress that this expression for Hcb corresponds to a bulk specimen and was found in Refs.

[1{5] from thermodynamic considerations, neglecting the role of the boundary e®ects.

The quantity Hcb does not enter directly into GL-equations, so the value hcb is a regular

point of these equations, bearing no singularity in the behaviour of the solutions.

Recall the meaning of the ¯eld Hcb [1{5]. According to the energy conservation law,

during a ¯rst order phase transition from s- into n-state (the Meissner e®ect) the free

energy is absorbed H2
cb=8¼ (for unite volume of in¯nite superconductor). In the reversed

transition from n- into s-state the same energy is discharged. However, as the self-

consistent GL-calculations show, in mesoscopic superconductors (plates [6] and cylinders

[8, 11]) the energy exchange during (s; n)-transitions is more complicated. Thus, in the

case of a cylinder the absorbed (or discharged) energy can be represented as H2
c =8¼, where

the quantity Hc(R; {; º) depends not only on the cyliner radius R and the parameter {,

but also on the ¯eld regime [º = +1 in the FI-regime, º = ¡ 1 in FD-regime]. For

instance, in a superconducting cylinder with R¸ ¾ 1 and { > 0:93 (region IIa in Fig.

1) the energy in the FI-regime changes in two stages: ¯rst, in a ¯eld Hc = H1 (i.e. in

a ¯eld h1 = H1=H» in Fig. 5(c) and 5(d)) the energy increases ¯rstly in a jump (at

the ¯rst order transition from M- to e-state), and then smoothly during the ¯nal second

order phase transition into n-state at the ¯eld H2 = H» (h2 = 1). In the FD-regime the

superconducting energy begins diminishing ¯rst smoothly at h2 = 1 and then changes in

a jump during the ¯rst order transition from d- to M-state at the ¯eld hr.

In a superconducting cylinder with { < 0:93 (m = 0, R¸ ¾ 1, in regions Ia and Ib in

Fig. 1) in FI-regime the specimen absorbs all the energy in a jump (at a ¯eld h1; see Figs.

5(a) and 5(b)). In FD-regime for 0:707 < { < 0:93 (in region Ib; see Fig. 5(b)) the energy

of a supercooled n-metal begins diminishing smoothly at a ¯eld hp due to formation of

the p-state, then followed by a ¯rst order jump at a ¯eld hr at the ¯nal restoration of

M-state. For { < 0:707 (in region Ia; see Fig. 5(a)) a supercooled metal releases all the

energy in a ¯rst order jump during the transition from n- to M-state in the ¯eld h¤
r, when

the n-state becomes absolutely unstable.

The above is also illustrated in Fig. 6, where the example of the free energy (¢g)

and the magnetic moment (¡ 4¼M») dependences on the ¯eld h = H=H» are given for a

cylinder with R¸ = 5, { = 1:5; the dashed arrows mark the hysteresys loops in FI- and

FD-regimes, the dotted arrow corresponds to the point of equilibrium transition between

M- and d-states, when their free energies equalize. Evidently, there is no singularity at a

thermodynamic ¯eld hcb = 0:47.

Thus, the value hcb = ({
p

2)¡1 is not a critical point for Eqs. (1){(4). However, there

exists an exceptional value { = 1=
p

2, when the state belongs to the critical line ¼ (at

R¸ ¾ 1 in Fig. 1); in this case the solution at hcb = 1 posesses special properties (see

the next Section).
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7 Connection with the Bogomolnyi equations

As is clear from Fig. 1, the region of existence of the metastable p-states is bounded by

a ¼-curve (the states belonging to ¼-boundary will be named ¼-states). It is intresting

to trace changes in the space pro¯les of ¼-states, Ã(½) and b(½), while moving along ¼-

boundary. This is shown in Fig. 7, where ¼-solutions are depicted for R¸ = 9; 10; 12. One

can see, that for R ¾ ¸ and { ! 1=
p

2 the pro¯le of ¼-states acquires the characteristic

shape of the interface between s- and n- half-spaces [1].

Because at R ! 1 the role of the boundary diminishes, the solution Ã(½), b(½) for a

bulk cylinder should go over into the solution Ã(x), b(x) for a bulk plate (at D ! 1).

As Bogomolnyi showed [16], for in¯nite superconductor with { = 1=
p

2 the GL-equations

are degenerate and can be reduced to a system of two nonlinear ¯rst order equations,

which have an analytic solution. This solution (at m = 0 and H = H») is given implicitly

by a formula [17]

Z Ã

Ãi

dy

y
q

y2 ¡ (1 + ln y2)
= x; b2

»(x) = 1 ¡ Ã2(x); b»(x) =
B(x)

H»

; (11)

where Ãi = 0:451 is the in°exion point [6] of the function Ã(x) (d2Ã=dx2jx=0 = 0, x is a

dimensionless Cartesian co-ordinate, ¡ 1 < x < +1).

The function Ã(x), found according to Eq. (11), is shown in Fig. 7 by a dotted curve.

Evidently, the self-consistent solution for Ã at R¸ = 12 practically coincides with the

solution (11) for a bulk plate (the in°exion points i of both solutions are superimposed).

The self-consistent solution for a ¯eld at R¸ = 12 is also well described by a formula

(11): b2
»(x) = 1 ¡ Ã2. Thus, in case of a bulk cylinder (at m = 0, { = 1=

p
2, H = H»,

R¸ ! 1), as well as for a bulk vortex-free plate [6], the degenerate Bogomolnyi solution

corresponds to a metastable ¼-state (i.e. to the last of p-states, existing in FD-regime in

region Ib in Fig. 1).

8 Conclusions

In conclusion, we clarify why there exist two critical parameters, {0 = 0:707 and {c =

0:93, which (according the GL-theory) divide bulk superconductors (the plates, or cylin-

ders) into two di®erent groups. As was mentioned already, there are two regimes of

the ¯eld action on the superconductor: the ¯eld increase (FI) and the ¯eld decrease

(FD) regimes. In FI-regime the value {c = 0:93 corresponds to the point of absolute

instability of a superconducting phase, when the M-state either passes immediately into

n-state (class-I superconductors with { < {c), or the tail of e-states forms preliminary

(class-II superconductors with { > {c; see Fig. 2). In FD-regime the value {0 = 0:707

correspondsto the point of absolute instability of a supercooled normal phase, when the

n-state either passes immediately into the M-state (type-I superconductors with { < {0),

or the intermediate p-state forms preliminary (type-II superconductors with { > {0; see

Fig. 2). Thus, two critical parameters ({0 and {c) re°ect the possibility of the hysteresis
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and the existence of di®erent physical processes, which take place in the system. One

can also say, that the value {c divides bulk superconductors into two classes in FI-regime

and corresponds to the maximal ¯eld (H») of the existence of a superconducting M-state.

The value {0 divides bulk superconductors into two types in FD-regime and corresponds

to the minimal ¯eld (H») of the existence of a supercooled n-state. Finally, two critical

parameters {0 and {c describe two di®erent regimes of the ¯eld action, they both have

clear physical signi¯cance.

We also clarify the reason, why the maximal critical ¯eld for the existence of super-

conductivity (Hmax = H») coincides with the minimal critical ¯eld for the existence of a

supercooled n-state (Hmin = H»). The point is that both of these ¯elds correspond to the

s-states (e- or p-) with Ã ½ 1, and both are described by the same {-independent linear

equation (6) [13, 14]. However, these two formulas correspond to di®erent { (Hmax = H»

for { > {c in FI-regime, and Hmin = H» for { < {c in FD-regime), i.e. they describe

di®erent superconductors with di®erent values of ¸ = {». Since neither the amplitude

nor the transition point can be found from the linear equation as functions of {, it is

clear, that the critical value {c (as well as {0) should be found from a set of general

nonlinear equations.

That the value {0 = 1=
p

2 corresponds to the boundary of the metastable p-states

in FD-regime, was not mentiond by Ginzburg and Landau [1] because they considered

the in¯nite system, where the superconductor’s boundaries are beyond the ¯eld of vision.

Subsequently the question about the external ¯eld and how it changes can not be formu-

lated. It turns out, that in a ¯nite dimension system [6] the model superconducting state,

which has the form of the (s; n)-interface [1], cannot be realized simply by increasing the

external ¯eld. It would be necessary to use FD-regime and pass through the sequence

of a supercooled metastable n- and p-states, the last of which (at { = {0 and H = H»)

would correspond to the (s; n)-interface [6]. [Actually, in Ref. [1] the intermediate state

of a bulk type-I superconductor was considered, with the ¯eld directed perpendicular the

surface of the plate, while in Ref. [6] the ¯eld is directed parallel to the surface of the

plate.]

Note also, that during ¯rst order jumps (which occur at the instability points h1

and hr) the superconducting states change in time. Such nonstationary processes must

be accompanied by splashes of electromagnetic and phonon radiation [18], which (in

principle) can be detected experimentally. Besides, it is possible (in principle) to observe

the magnetization jumps in transitions between di®erent vortex-free states of mesoscopic

superconductor, and also the heat capacity jumps and various hysteresis phenomena.

However, the detailed discussion of the experiments is beyond the scope of the present

investigation. We intended only to expose the GL-theory predictions, using the one-

dimensional solutions of GL-equations (in case m = 0). Such one-dimensional approach

was used in a number of publications [19{21] to describe also the vortex states with

m 6= 0. However, some of the questions raised in these papers require further attention

and we intend to discuss the case m 6= 0 in more detail in future.

Evidently, the described above e-layer with a suppressed value of the order parameter
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(which forms in superconductors with { > {c) would become unstable (if the cylinder

radius R is large) and break into separate vortices (having Ã = 0 at each of the vortex

axises), so in the increasing ¯eld H the regular vortex lattice would form [2]. Thus,

the one-dimensional centrally disposed vortex states can be realized, probably, only in

su±ciently small size superconductors. However, for a detailed description of a more

complicated two-dimensional states (with m > 0) it would be necessary to solve partial

di®erential equations. This would require a speci¯c methods of investigation and large

computers. [See for instance papers [22, 23], where the two-dimensional solutions were

found numerically to describe the experiments [24{28] with a thin superconducting disks

in a perpedicular magnetic ¯eld.] Further study of the topics touched above is needed

both theoretically and experimentally.
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Fig. 1 The state diagram on the plane (R ¶ ; {). Curve SI¡II marks the boundary between the
­ rst and second order phase transitions in FI-regime; curve º marks the boundary of p-states
in FD-regime. Above curve ± (in region IIa) the jumps of magnetization exist at transitions
between M-, e- and d-states and the hysteresis is possible; below curve ± no hysteresis or jumps
are possible. In region IIb the magnetization curves M (H) have the in®exion points; in region
IIc there are no in®exion points.
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Fig. 2 The magnetization ( ¡ 4 º M) as a function of the ­ eld h (schematically) in di¬erent regions
of the state diagram: (a) { Ia; (b) { Ib; (c) { SI¡II-boundary; (d) { IIa; (e) { IIb; (f) { IIc. Shown
are the states (M, n, n, p, e, d), the critical ­ elds (h1, h2, hp, hr) and jumps ( ¯ 1, ¯ r) at the points
of transition between the states. The arrows mark the hysteresis loops in FI- and FD-regimes.
The letter i in Fig. 2(e) marks the in®exion point of the hysteresis-less curve. In region IIc (Fig.
2(f)) the in®exion points are absent. (The ­ eld normalization is arbitrary.)
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Fig. 3 The changes of the solutions Á(x) and b(x) (x = r=R) in the ­ eld increase regime (FI).
(a) and (b) { for { = 0:8, R¶ = 7:5 (region Ib in Fig. 1); at h ¹ = 1:2316 the jump occurs from
M- to n-state. (c) and (d) { for { = 1:5, R ¶ = 4:0 (region IIb in Fig. 1); at h ¹ = 0:6488 the
jump occurs from M- to e-state, which vanish ­ nally in a ­ eld h¹ = 1:0098 by a second order
phase transition. The dashed curve K corresponds to e-state with Á ½ 1 (h ¹ = 0:9956) and it
can be described by the Kummer function.
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Fig. 4 The changes of the solutions Á(x) and b(x) (x = r=R) in the ­ eld decrease regime (FD).
(a) and (b) { for { = 0:8, R¶ = 7:5 (region Ib in Fig. 1); at h ¹ = 0:9155 the jump occurs from
p- to M-state. The dashed curves K correspond here to p-state with Á ½ 1 (h¹ = 1:0), which
begins nucleating at hp = 1:0011. (c) and (d) { for { = 1:5, R¶ = 4:0 (region IIb in Fig. 1);
at h¹ = 0:6181 the jump from d- to M-state occurs. The dashed curves K correspond here to
e-state with Á ½ 1 (h ¹ = 0:9956), which begins nucleating at h2 = 1:0098.
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Fig. 5 The critical ­ elds versus cylinder radius R ¶ (m = 0) in cases: (a) { = 0:5; (b) { = 0:8;
(c) { = 1; (d) { = 1:2; h = H=H¹ . The critical ­ elds (h1, h2, hp, hi, hr , h ¤

r) mark points
of transition between di¬erent states (M, e, d, i, n, n) in FI- and FD-regimes (see the text).
The letter K marks the curve of a second order phase tansitions, which can be found from a
linearized theory.
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Fig. 6 The Gibbs free energy (a) and magnetization (b) of the cylinder with R ¶ = 5, { = 1:5
as function of h = H=H ¹ . The arrows mark the transitions from M- to e-state (h1 = 0:60,
FI-regime) and from d- to M-state (hr = 0:53, FD-regime). The sign * marks the crossing
point of the free energy curves (the equilibrium points, eq, heq = 0:55), where, according to
the thermodynamics, the magnetization jump in FD-regime should occur. Thermodynamic ­ eld
hcb = ({

p
2)¡1 = 0:47 is also marked.
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Fig. 7 The self-consistent º -solutions Á(x) for R¶ = 9 ({ = 0:7077, h = H=H¹ = 0:999),
R ¶ = 10 ({ = 0:7075, h = 0:999) and R ¶ = 12 ({ = 0:7075, h = 0:999). The dotted line is
the degenerate Bogomolnyi solution (the in®exion points i of the degenerate solution (11) and
of the self-consistent solution with R ¶ = 12 are superimposed).


