In this paper we construct and investigate localization algorithms for isolated singularities of a function which is a solution to a linear convolution equation of the first kind whose right-hand side is given with an error. We consider two types of singularities: δ -functions and discontinuities of the first kind. A problem for singularities localization is an ill-posed problem having perturbation. We use averaging methods defined by an averaging functional to obtain the singularities. We formulate conditions that the averaging functional must satisfy. For convolution equations, using the Fourier transform, we obtained upper estimates of precision of the singularities localization, separation threshold and other important characteristics of the supposed methods.
Inhalt
-
Erfordert eine Authentifizierung Nicht lizenziertLocalization algorithms for singularities of solutions to convolution equations of the first kindLizenziert21. November 2008
-
Erfordert eine Authentifizierung Nicht lizenziertUnimprovable estimates of solutions for some classes of integral inequalitiesLizenziert21. November 2008
-
Erfordert eine Authentifizierung Nicht lizenziertRelative computational efficiency of iteratively regularized methodsLizenziert21. November 2008
-
Erfordert eine Authentifizierung Nicht lizenziertUniqueness of solution to an inverse problem for a semilinear system of partial differential equationsLizenziert21. November 2008
-
Erfordert eine Authentifizierung Nicht lizenziertQuasi-solution in inverse coefficient problemsLizenziert21. November 2008
-
Erfordert eine Authentifizierung Nicht lizenziertInverse nodal problems for Sturm–Liouville operators on star-type graphsLizenziert21. November 2008
-
Öffentlich zugänglichFifth International Conference. Algorithmic Analysis of Unstable Problems (AAUP-2008)21. November 2008