The estimation of distributed parameters in a partial differential equation (PDE) from measures of the solution of the PDE may lead to underdetermination problems. The choice of a parameterization is a frequently used way of adding a priori information by reducing the number of unknowns according to the physics of the problem. The refinement indicators algorithm provides a fruitful adaptive parameterization technique that parsimoniously opens the degrees of freedom in an iterative way. We present a new general form of the refinement indicators algorithm that is applicable to the estimation of distributed multidimensional parameters in any PDE. In the linear case, we state the relationship between the refinement indicator and the decrease of the usual least-squares data misfit objective function. We give numerical results in the simple case of the identity model, and this application reveals the refinement indicators algorithm as an image segmentation technique .
Inhalt
-
Erfordert eine Authentifizierung Nicht lizenziertThe multidimensional refinement indicators algorithm for optimal parameterizationLizenziert9. Mai 2008
-
Erfordert eine Authentifizierung Nicht lizenziertInverse problem for the Schrödinger operator in an unbounded stripLizenziert9. Mai 2008
-
Erfordert eine Authentifizierung Nicht lizenziertIdentification of two memory kernels in a fully hyperbolic phase-field systemLizenziert9. Mai 2008
-
Erfordert eine Authentifizierung Nicht lizenziertA priori weighting for parameter estimationLizenziert9. Mai 2008
-
Erfordert eine Authentifizierung Nicht lizenziertOn reduction of informational expenses in solving ill-posed problems with not exactly given input dataLizenziert9. Mai 2008