In this paper electromagnetic Herglotz dyadics are used to develop a superposition method and apply it for the study of an inversion scheme for electromagnetic scattering in chiral media. The direct scattering problem for the perfect conductor is formulated and Beltrami Herglotz dyadics and dyadic electromagnetic Herglotz pairs are being used. Assuming that the incident electromagnetic field is produced by a superposition of plane incident waves, the scattered field and the corresponding far-field pattern are expressed as the superposition of the scattered fields and the corresponding to them far-field patterns respectively. Far-field operators are defined and studied and an integral equation is posed. The solvability of this equation is related to the solution of the interior perfect conductor boundary value problem. Finally, an inversion scheme is posed and a theorem for it's solvability is proved.
Inhalt
-
Erfordert eine Authentifizierung Nicht lizenziertInverse electromagnetic scattering by a perfect conductor in a chiral environmentLizenziert5. März 2008
-
Erfordert eine Authentifizierung Nicht lizenziertRecovering a potential from Cauchy data in the two-dimensional caseLizenziert5. März 2008
-
Erfordert eine Authentifizierung Nicht lizenziertSolving constraint ill-posed problems using Ginzburg–Landau regularization functionalsLizenziert5. März 2008
-
Erfordert eine Authentifizierung Nicht lizenziertAn inverse problem of identifying source coefficient in solute transportationLizenziert5. März 2008
-
Erfordert eine Authentifizierung Nicht lizenziertBoundary integral equations for acoustical inverse sound-soft scatteringLizenziert5. März 2008
-
Erfordert eine Authentifizierung Nicht lizenziertA note on logarithmic convergence rates for nonlinear Tikhonov regularizationLizenziert5. März 2008
-
Erfordert eine Authentifizierung Nicht lizenziertAnalytic approximation with real constraints, with applications to inverse diffusion problemsLizenziert5. März 2008