Missing exposure information is a very common feature of many observational studies. Here we study identifiability and efficient estimation of causal effects on vector outcomes, in such cases where treatment is unconfounded but partially missing. We consider a missing at random setting where missingness in treatment can depend not only on complex covariates, but also on post-treatment outcomes. We give a new identifying expression for average treatment effects in this setting, along with the efficient influence function for this parameter in a nonparametric model, which yields a nonparametric efficiency bound. We use this latter result to construct nonparametric estimators that are less sensitive to the curse of dimensionality than usual, e. g. by having faster rates of convergence than the complex nuisance estimators they rely on. Further we show that these estimators can be root-n consistent and asymptotically normal under weak nonparametric conditions, even when constructed using flexible machine learning. Finally we apply these results to the problem of causal inference with a partially missing instrumental variable.
Inhalt
- Research Articles
-
Öffentlich zugänglichEfficient Nonparametric Causal Inference with Missing Exposure Information14. März 2020
-
Öffentlich zugänglichIncorporating Contact Network Uncertainty in Individual Level Models of Infectious Disease using Approximate Bayesian Computation10. Dezember 2019
-
Öffentlich zugänglichBayesian Two-Stage Adaptive Design in Bioequivalence16. Juli 2019
-
Öffentlich zugänglichExploration of Heterogeneous Treatment Effects via Concave Fusion20. September 2019
-
Öffentlich zugänglichSimple Quasi-Bayes Approach for Modeling Mean Medical Costs5. Juni 2019
-
Öffentlich zugänglichBayesian Autoregressive Frailty Models for Inference in Recurrent Events21. November 2019
-
Öffentlich zugänglichBayesian Detection of Piecewise Linear Trends in Replicated Time-Series with Application to Growth Data Modelling25. Juli 2019
-
Öffentlich zugänglichCell Line Classification Using Electric Cell-Substrate Impedance Sensing (ECIS)5. Dezember 2019
-
Öffentlich zugänglichOn the Use of Optimal Transportation Theory to Recode Variables and Application to Database Merging14. September 2019