We prove that any holomorphic locally homogeneous geometric structure on a complex torus of dimension two, modelled on a complex homogeneous surface, is translation invariant. We conjecture that this result is true in any dimension. In higher dimension, we prove it for G nilpotent. We also prove that for any given complex algebraic homogeneous space (X, G), the translation invariant (X, G)-structures on tori form a union of connected components in the deformation space of (X, G)-structures.
Inhalt
-
21. Januar 2016
-
1. Februar 2016
-
17. März 2016
-
21. März 2016
-
13. Mai 2016
-
10. Juni 2016
-
11. Juli 2016
-
12. August 2016
-
Open AccessCosymplectic and α-cosymplectic Lie algebras21. Oktober 2016
-
9. November 2016
-
16. November 2016
- Topical Issue on Complex Geometry and Lie Groups
-
12. Mai 2016
-
13. September 2016
-
20. September 2016
-
7. Oktober 2016