
© 2016 Jeffrey Streets, published by De Gruyter Open.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.

Complex Manifolds 2016; 3:222–230

Research Article Open Access

Jeffrey Streets*

Pluriclosed flow on manifolds with globally
generated bundles
DOI 10.1515/coma-2016-0010
Received June 12, 2016; accepted August 7, 2016

Abstract:We show global existence and convergence results for the pluriclosed flow on manifolds for which
certain naturally associated tensor bundles are globally generated.

1 Introduction
Given (M2n , J) a complex manifold, we say that a Hermitian metric g is pluriclosed if the associated Kähler
form ω satisfies

√
−1∂∂ω = 0. For such metrics the author and Tian introduced [7] a parabolic flow general-

izing the Kähler-Ricci flow (see §2.1 for definitions). Recently in [4] the author obtained global existence and
convergence results for this flow and manifolds admitting special background metrics, for instance tori and
manifoldswith nonpositive bisectional curvature. In this short notewe establish global existence and conver-
gence results for this flow assuming conditions of a complex geometric nature as opposed to the differential
geometric assumptions of metrics with certain curvature conditions. Thus these theorems are more natural
from a complex geometry standpoint, and apply to a much wider class of manifolds. Moreover, our results
have implications for the existence andmoduli of generalized Kähler structures on thesemanifolds using the
generalized Kähler-Ricci flow [9]. This note is a close companion to [4], and though we will review the most
pertinent aspects, familiarty with that paper will help in reading this. Before stating our theorems we record
several definitions.

Definition 1.1. Fix (M2n , J) a complex manifold. Given g a Hermitian metric on M, by taking inverses and
tensor products g defines a Hermitian metric on (T1,0)⊗p ⊕ (T*1,0)⊗q. Then by restriction we obtain a natu-
ral metric on any subbundle E ⊂ (T1,0)⊗p ⊕ (T*1,0)⊗q, which we will refer to as FE(g). We say that such a
holomorphic subbundle E is
1. covariant proper if E ⊂ (T1,0)⊗p for some p ∈ N and the natural map

FE : Sym2(T*1,0) → Sym2(E*)

is proper.
2. covariant weakly proper if E ⊂ (T1,0)⊗p for some p ∈ N, and if given a background metric h, the map

FE : Sym2(T*1,0) ∩
{︂
g | det gdet h ≥ 1

}︂
→ Sym2(E*)

is proper.
3. contravariant proper if E ⊂ (T*1,0)⊗p for some p ∈ N and the natural map

FE : Sym2(T1,0) → Sym2(E*)

is proper.
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4. globally generated if it is generated by sections. That is, letting H0(M, E) denote the finite dimensional
space of holomorphic sections of E, for all p ∈ M the natural evaluation map

evp : H0(M, E) → Ep

is surjective.

Remark 1.2. 1. An elementary interpretation of a bundle being proper is that an upper bound for the in-
duced metric on the bundle implies an upper bound for the original metric. For weakly proper bundles
the meaning is that an upper bound for the induced metric on the bundle combined with a lower bound
for the determinant implies an upper bound for the metric.

2. The most basic examples of proper bundles are T1,0, T*1,0. Other examples include (T1,0)⊗p , (T*1,0)⊗p.
3. An example of a bundle which is weakly proper but not proper is Λn−1(T1,0).
4. The question of when complex manifolds admit globally generated bundles has various relations to al-

gebraic geometry. We direct the reader to [2] and the references therein for some further context.

Next we state our main theorems. They are stated in an overly general manner, but we supplement the dis-
cussion with concrete families of examples.

Theorem 1.3. Let (M2n , J) be a compact complex manifold.
1. Suppose M admits a contravariant globally generated proper bundle. Given g a pluriclosed metric the solu-

tion to pluriclosed flow exists on [0, τ*) (see Definition 2.1 for the definition of τ*).
2. Suppose M admits a contravariant globally generated weakly proper bundle. If cBC1 (M, J) = 0 and [∂ω] =

0 ∈ H2,1 then the solution exists on [0,∞) and converges exponentially as t →∞ to a Calabi-Yau metric.

Remark 1.4. 1. The bundle T*1,0 is proper. If it is globally generated then the anticanonical bundle is also
globally generated and it follows that the formal existence time τ* = ∞.

2. Kähler manifolds with globally generated cotangent bundle are quite abundant. For instance, any prod-
uct of Riemann surfaces of positive genus yields a manifold with globally generated T*1,0. Moreover, hav-
ing a globally generated cotangent bundle is inherited by complex subvarieties, so in particular subva-
rieties of tori have globally generated cotangent bundles. This includes large families of manifolds of
general type.

3. The hypothesis [∂ω] = 0 is satisfied automatically in some circumstances, such as of course if h2,1 = 0,
or if (M2n , J) satisfies the ∂∂-lemma.

Theorem 1.5. Let (M2n , J) be a complex manifold with a covariant globally generated weakly proper bundle
and cBC1 (M, J) = 0. Given g a pluriclosed metric with [∂ω] = 0 ∈ H2,1 the solution to pluriclosed flow with initial
condition g exists on [0,∞) and converges exponentially as t →∞ to a Calabi-Yau metric.

Remark 1.6. 1. The two cohomological hypotheses cBC1 = 0 and [∂ω] = 0 ∈ H2,1 are natural to impose if
one expects convergence to Calabi-Yau. The Hopf surface S3 × S1 with standard complex structure has
c1 = 0, but cBC1 ≠ 0 and [∂ω] ≠ 0 for any pluriclosed metric.

2. The bundle T1,0 is proper, and this bundle being globally generated is equivalent to (M2n , J) being com-
plex homogeneous, as follows from elementary arguments (see [1]). Theorem 1.5 can be used to rule out
the existence of pluriclosed metrics on certain backgrounds as well. For instance, compact quotients of
SL(2,C) are parallelizable and hence cBC1 = 0. Moreover, they satisfy h2,1 = 0 ([1] Corollary 8.2.3). It
follows that these manifolds admit no pluriclosed metric, since Theorem 1.5 then yields a Kähler metric,
which quotients of SL(2,C) cannot support since the only Kähler parallelizable manifolds are tori. This
particular statement can be obtained directly by averaging a putative SKT metric and then performing
direct calculations using the Lie algebra structure of SL(2,C). Nonetheless we include this example to
illustrate the nonexistence principle.
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Corollary 1.7. Let (M2n , I) be a complex manifold with either a covariant or contravariant globally generated
weakly proper bundle and cBC1 = 0. Suppose (M2n , I, J, g) is a generalized Kähler structure with [∂ωI ] = 0 ∈
H2,1
I . Then (M2n , I, J, g) is deformable through generalized Kähler structures to a structure (M2n , I, J∞, g∞)

such that g∞ is Calabi-Yau.

The central new observation in proving the above results is that there are very clean evolution equations for
the square norm of a holomorphic section of a vector bundle along pluriclosed flow. The hypotheses on the
bundle allow one to turn these favorable evolution equations into upper or lower bounds for themetric. Com-
bining these with prior results yields full regularity of the flow. We make use of the Perelman functionals for
pluriclosed flowdiscovered in [8] to obtain the convergence statements. In §2we provide relevant background
information on the pluriclosed flow and generalized Kähler-Ricci flow. In §3 we derive evolution equations
for holomorphic sections of tensor bundles overM. We combine our estimates in §4 and give the proofs of the
theorems.

2 Background
In this sectionwe give a very brief introduction to relevant aspects of pluriclosed flow and generalized Kähler-
Ricci flow. The reader should refer to [4], [7], and [8] for more detail.

2.1 Pluriclosed flow

In this subsection we record some elementary properties of the pluriclosed flow. First we express the flow
equation using differential operators appearing in Hodge theory. In particular, on a complex manifold
(M2n , J), a one-parameter family of Hermitianmetrics gt is a solution of pluriclosed flow if the corresponding
Kähler forms ωt satisfy

∂
∂t ω = ∂∂*gω + ∂∂*gω +

√
−1∂∂ log det g. (2.1)

As shown in [7], this is a strictly parabolic equation with pluriclosed initial condition ω0, and admits short-
time solutions on compact manifolds.

It is also useful to express this flow using the Chern connection. Given (M2n , J, g) a Hermitian manifold,
the Chern connection is the unique connection∇ on T1,0 such that∇g ≡ 0,∇J ≡ 0 and the torsion of∇ has
vanishing (1, 1) piece. This torsion can be expressed in complex coordinates as

Tijk = glk
[︁
Γ lij − Γ lji

]︁
= gjk,i − gik,j .

The metric is Kähler if and only if T ≡ 0. Due to the fact that ∇, in general, has torsion, there are various
“Ricci curvatures" which can be defined using this connection. First, one has

Sij = g
lkΩklij ,

where Ω is the Chern curvature. We will also use the representative of the first Chern class with respect to the
Chern connection, which we will denote by

ρij = g
lkΩijkl .

We also define a certain quadratic expression in torsion, namely

Qij = g
lkgnmTiknTjlm .

With these definitions made, we can express the pluriclosed flow equation ([7] Proposition 3.3) as

∂
∂t g = − S + Q. (2.2)
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2.2 Formal existence time

Important inunderstanding the existence timeof solutions to (2.1) (equivalently 2.2) is a formal cohomological
obstruction. Observe that a pluriclosed metric defines a positive class in Aeppli cohomology. Using (2.1), it is
direct to see that this class evolves along the pluriclosed flow via

[ωt] = [ω0] − tc1.

This allows us to define a formal maximal smooth existence time (cf. [8])

Definition 2.1. Given (M2n , J) a compact complex manifold, and g0 a pluriclosed metric, let

τ* := sup{t > 0 | [ω0] − tc1 admits pluriclosed metrics}.

For times τ < τ* we can define a reduction of the pluriclosed flow to a flow on a (1, 0) form on [0, τ]. First, fix
a background Hermitian metric h. Since τ < τ*, there exists µ ∈ Λ1,0 such that

ω̂τ := ω0 − τρ(h) + ∂µ + ∂µ > 0. (2.3)

Now consider the smooth one-parameter family of Kähler forms

ω̂t :=
t
τ ω̂τ +

(τ − t)
τ ω0.

Definition 2.2. Let (M2n , gt , J) be a smooth solution to pluriclosed flow on [0, τ]. Given choices ĝt , h, µ as
above, for a one parameter family αt ∈ Λ1,0 let

ωα := ω̂t + ∂αt + ∂αt .

We say that a one-parameter family αt ∈ Λ1,0 is a solution to (ĝt , h, µ)-reduced pluriclosed flow if

∂
∂t α = ∂

*
gαωα −

√
−1
2 ∂ log det gαdet h −

µ
τ ,

α0 = 0.
(2.4)

Remark 2.3. This reduction generalizes the reduction of Kähler-Ricci flow to the complex parabolic Monge
Ampere equation (with additional background terms). In the special casewhichwe frequently considerwhere
cBC1 = 0 and [∂ω0] = 0, it follows that τ* = ∞, andmoreover if one chooses the backgroundmetric h to satisfy
ρ(h) = 0, then the reduction can be chosen so that ω̂t = ω0, µ = 0. This is relevant to obtaining certain a
priori estimates below.

2.3 Generalized Kähler-Ricci flow

We will briefly summarize the generalized Kähler-Ricci flow here, referring the reader to [4, 9] for further de-
tail. To begin we introduce generalized Kähler structures, referring the reader to [3] for further background.
A generalized Kähler manifold is a quadruple (M2n , I, J, g) consisting of a Riemannian metric with two com-
patible integrable complex structures I, J, such that the corresponding Kähler forms satisfy

dcIωI = H = −dcJωJ , dH = 0.

In particular, the metric g is pluriclosed with respect to two different complex structures. This observation
combined with the connection between pluriclosed flow and renormalization group flows from [8] leads one
to the definition of generalized Kähler-Ricci flow:

∂
∂t g = − 2Rc+

1
2H

2 ∂
∂t H = ∆dH,

∂
∂t I = Lθ♯I I,

∂
∂t I = Lθ♯J J.
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Here θI is the Lee form with respect to the Hermitian structure (g, I). Interestingly, both complex structures
evolve by time-dependent, but distinct, diffeomorphisms. It is possible to gauge-modify this flow to freeze
one complex structure, but not both. Choosing to freeze I, the resulting metric evolves by pluriclosed flow on
(M, I), and so our results on pluriclosed flow will have immediate applications to this flow. We will refer to
this as considering the flow “in the I-fixed gauge."

2.4 Evolution equations and technical results

We begin by recording two evolution equations relevant to what follows.

Lemma 2.4. ([4] Lemma 6.1) Let (M2n , J, gt) be a solution to pluriclosed flow, and let h denote another Hermi-
tian metric on (M, J). Then (︂

∂
∂t − ∆

)︂
log det gdet h = |T|2 − trg ρ(h).

Lemma 2.5. ([4] Proposition 4.9,4.10) Let (M2n , J, gt) be a solution to pluriclosed flow. Fix background data
ĝt , h, µ and a solution αt to (2.4). Then

∂
∂t |∂α|

2
gα = ∆gα |∂α|

2 − |∇∂α|2 −
⃒⃒
∇∂α

⃒⃒2 − 2⟨Q, tr ∂α ⊗ ∂α
⟩
− 2ℜ

⟨
trgα ∇gαTĝ + ∂µ, ∂α

⟩
.

Suppose furthermore that µ = 0 and

∂ω̂t = ∂ω̂0 = ∂η.

Let ϕ = ∂α − η. Then (︂
∂
∂t − ∆gt

)︂
|ϕ|2 = − |∇ϕ|2 − |Tgt |2 − 2

⟨
Q, ϕ ⊗ ϕ

⟩
.

Next we record some background theorems on regularity and the existence and rigidity of limit points for
pluriclosed flow relevant to what follows. Corollary 2.9 summarizes the situation and is the main technical
tool.

Theorem 2.6. ([4] Theorem 1.8) Let (M2n , J) be a compact complex manifold. Suppose gt is a solution to the
pluriclosed flow on [0, τ), with αt a solution to the (ĝt , h, µ)-reduced flow. Assume there is a constant λ such
that for all t ∈ [0, τ),

λg0 ≤ gt .

There exists a constant Λ = Λ(n, g0, ĝ, h, µ, λ) such that for all t ∈ [0, τ),

gt ≤ Λ(1 + t)g0, |∂α|2 ≤ Λ.

Theorem 2.7. ([4] Theorem 1.7) Let (M2n , J) be a compact complex manifold. Suppose gt is a solution to the
pluriclosed flow on [0, τ), τ ≤ 1, with αt a solution to the (ĝt , h, µ)-reduced flow as in (2.4). Suppose there exist
constants λ, Λ such that

λg0 ≤ gt ≤ Λg0, |∂α|2 ≤ Λ. (2.5)

Given k ∈ N there exists a constant C = C(n, k, g0, ĝ, h, µ, λ, Λ) such that

sup
M×{t}

t
k∑︁
j=0

⃒⃒⃒
∇j
gΥ(g, h)

⃒⃒⃒ 2
1+j ≤ C,

where Υ(g, h) = ∇g −∇h is the difference of the Chern connections associated to g and h.
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Lemma 2.8. ([4] Lemma 6.3) Let (M2n , J, h) be a compact Hermitian manifold with ρ(h) ≤ 0. Suppose g is a
pluriclosed metric which is a steady gradient soliton. Then g is a Calabi-Yau metric.

Corollary 2.9. Let (M2n , J, h) be a compact Hermitian manifold with ρ(h) ≤ 0. Suppose gt is a solution to
pluriclosed flow on [0,∞) satisfying

C−1h ≤ g ≤ Ch,
⃒⃒⃒
∇k
hΥ(g, h)

⃒⃒⃒2
≤ C,

where Υ(g, h) = ∇g − ∇h is the difference of the Chern connections associated to g and h. Then gt converges
exponentially to a Calabi-Yau metric.

Proof. This argument is implicit in the proof of ([4] Theorem 1.1), though not stated explicitly and sowe repeat
it for convenience. With the assumed uniform estimates, any sequence of times tj →∞admits a smooth sub-
sequential limiting metric on the same complex manifold. Moreover, the assumed uniform estimates imply
that the Perelman-type F functional for the pluriclosed flow ([8] Theorem 1.1) has a uniform upper bound for
all times. It follows from a standard argument that any subsequential limit as described above is a pluriclosed
steady soliton, and hence by Lemma 2.8 Calabi-Yau. It now follows from the linear/dynamic stability result of
([6] Theorem 1.2) that the whole flow converges exponentially to g∞, as required.

3 Evolution of holomorphic sections
Lemma 3.1. ([5] Lemma 4.7) Let (M2n , J, gt) be a solution to pluriclosed flow, and suppose βt , µt ∈ (T*1,0)⊗p

are one-parameter families satisfying

∂
∂t β = ∆gtβ + µ. (3.1)

Then
∂
∂t |β|

2 = ∆ |β|2 − |∇β|2 −
⃒⃒
∇β

⃒⃒2 − p ⟨Q, trg (︁β ⊗ β
)︁⟩

+ 2ℜ⟨β, µ⟩ .

Remark 3.2. Lemma 4.7 of [5] is stated only for β ∈ Λp,0 but the proof easily applies to this more general
case.

Corollary 3.3. Let (M2n , J, gt) be a solution to pluriclosed flow, and suppose β ∈ (T*1,0)⊗p is holomorphic. Then

∂
∂t |β|

2 = ∆ |β|2 − |∇β|2 − p
⟨
Q, trg

(︁
β ⊗ β

)︁⟩
. (3.2)

Proof. If β is holomorphic then βt = β is a solution of (3.3) with µ = 0, and so from Lemma 3.1 we conclude

∂
∂t |β|

2 = ∆ |β|2 − |∇β|2 −
⃒⃒
∇β

⃒⃒2 − p ⟨Q, trg (︁β ⊗ β
)︁⟩

= ∆ |β|2 − |∇β|2 − p
⟨
Q, trg

(︁
β ⊗ β

)︁⟩
,

as required.

Lemma 3.4. Let (M2n , J, gt) be a solution to pluriclosed flow, and suppose At , Bt ∈ Tp,0 are one-parameter
families satisfying

∂
∂t A = ∆gtA + B. (3.3)

Then
∂
∂t |A|

2 = ∆ |A|2 − |∇A|2 −
⃒⃒
∇A

⃒⃒2 + p ⟨︀Q, trg (︀A ⊗ A
)︀⟩︀

+ 2ℜ⟨A, B⟩ .
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Proof. By direct computation we have

∂
∂t |A|

2 = ∂
∂t

(︂
gi1 j1 . . . gip jpA

i1 ...ipAj1 ...jp
)︂

= p(−S + Q)i1 j1gi2 j2 . . . gip jpA
i1 ...ipAj1 ...jp +

⟨︀
∆A, A

⟩︀
+
⟨︀
A, ∆A

⟩︀
+ 2ℜ⟨A, B⟩

= p
⟨︀
−S + Q, trg

(︀
A ⊗ A

)︀⟩︀
+
⟨︀
∆A, A

⟩︀
+
⟨︀
A, ∆A

⟩︀
+ 2ℜ⟨A, B⟩ .

Next we observe the commutation formula

∆Aj1 ...jp = gkl∇k∇lA
j1 ...jp

= gkl∇l∇kAj1 ...jp +
p∑︁
r=1

gklΩjr
klm
Aj1 ...jr−1mjr+1 ...jp

= ∆Aj1 ...jp +
p∑︁
r=1

SjrmA
j1 ...jr−1mjr+1 ...jp .

It follows that ⟨︀
A, ∆A

⟩︀
= gi1 j1 . . . gip jpA

i1 ...ip∆Aj1 ...jp

= gi1 j1 . . . gip jpA
i1 ...ip

[︃
∆Aj1 ...jp +

p∑︁
r=1

SjrmA
j1 ...jr−1mjr+1 ...jp

]︃
=
⟨︀
A, ∆A

⟩︀
+ p

⟨︀
S, trg A ⊗ A

⟩︀
.

Lastly observe the identity

∆ |A|2 =
⟨︀
∆A, A

⟩︀
+
⟨︀
A, ∆A

⟩︀
+ |∇A|2 +

⃒⃒
∇A

⃒⃒2 .
Combining the above calculations yields the lemma.

Corollary 3.5. Let (M2n , J, gt) be a solution to pluriclosed flow, and suppose A ∈ Tp,0 is holomorphic. Then

∂
∂t |A|

2 = ∆ |A|2 − |∇A|2 + p
⟨︀
Q, trg

(︀
A ⊗ A

)︀⟩︀
,

∂
∂t log |A|

2 ≤ ∆ log |A|2 + p |T|2 .
(3.4)

Proof. If A is holomorphic then At = A is a solution of (3.3) with B = 0, and so from Lemma 3.1 we conclude

∂
∂t |A|

2 = ∆ |A|2 − |∇A|2 −
⃒⃒
∇A

⃒⃒2 + p ⟨︀Q, trg (︀A ⊗ A
)︀⟩︀

= ∆ |A|2 − |∇A|2 + p
⟨︀
Q, trg

(︀
A ⊗ A

)︀⟩︀
,

as required. A further elementary calculation yields that

∂
∂t log |A|

2 = ∆ log |A|2 +

⃒⃒⃒
∇|A|2

⃒⃒⃒2
|A|2

− |∇A|2 + p
⟨︀
Q, trg(A ⊗ A)

⟩︀
|A|2

.

Since A is holomorphic it follows from Kato’s inequality that⃒⃒⃒
∇|A|2

⃒⃒⃒2
≤ |∇A|2 |A|2 .

Also, by the Cauchy-Schwarz inequality it follows that⟨︀
Q, trg(A ⊗ A)

⟩︀
≤ |Q| |A|2 ≤ |T|2 |A|2 .

The corollary follows.
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4 Proofs of Theorems
Proof of Theorem 1.3. Let (M2n , J) be a compact complex manifold and let E denote a contravariant globally
generated proper bundle. We claim that, given a background Hermitian metric h, one has

gt ≥ C−1h, (4.1)

for some uniform constant C and any smooth existence time t. First we observe that since M is compact, the
space of holomorphic sections of E is finite dimensional, andwe choose a basis {σi}. Declaring σi(x, t) = σi(x)
one has that

∂
∂t σi = ∆σi .

It follows directly from the maximum principle applied to the result of Corollary 3.3 that

sup
M×{t}

|σi|2gt ≤ sup
M×{0}

|σi|2g0 ≤ C.

Since the σi form a finite spanning set at each point p, it follows that the induced metric on E is bounded
above. Since E is proper this implies that the metric on T*, i.e. g−1, is bounded above. Thus the claim of (4.1)
follows. The statement of existence on [0, τ*) follows directly from Theorem 2.6 and Theorem 2.7.

Now we establish the statement of convergence. Let h denote a background Hermitian metric for which
ρ(h) = 0. Combining Lemmas 2.4 and 2.5 we obtain that(︂

∂
∂t − ∆

)︂[︂
log det gdet h + |∂α|2

]︂
≤ 0.

It follows from the maximum principle that

gt ≤ Ch, |∂α|2 ≤ C.

It now follows directly from Theorem 2.7 and Corollary 2.9 that the flow exists smoothly for all time and con-
verges to a Calabi-Yau metric, as claimed.

Proof of Theorem 1.5. Let (M2n , J) be a compact complex manifold with cBC1 = 0, and let E denote a covariant
globally generated weakly proper bundle. We claim that, given a background Hermitian metric h, one has

gt ≤ Ch, (4.2)

for some uniform constant C and any smooth existence time t. As above, since M is compact, the space of
holomorphic sections of E is finite dimensional, and we choose a basis {σi}. Declaring σi(x, t) = σi(x) one
has that

∂
∂t σi = ∆σi .

Since cBC1 = 0 and [∂ω0] = 0 we can choose η and ϕ as in Lemma 2.5 so that(︂
∂
∂t − ∆

)︂
|ϕ|2 ≤ − |T|2 .

Now define

Φ = log |σi|2 + p |ϕ|2

It follows from Lemma 2.5 and Corollary 3.5 that(︂
∂
∂t − ∆

)︂
Φ ≤ 0.
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Note that we can still apply the maximum principle to Φ at maximum points even though it approaches −∞
at the vanishing locus of σi. It follows that

sup
M×{t}

|σi|2gt ≤ sup
M×{0}

|σi|2g0 ≤ C.

Since the σi form a finite spanning set at each point p, it follows that the induced metric on E is bounded
above. Since cBC1 = 0 we choose a Hermitian metric h such that ρ(h) = 0. It follows from Lemma 2.4 that(︂

∂
∂t − ∆

)︂
log det gdet h = |T|2 ≥ 0.

It follows from the maximum principle that

inf
M×{t}

det gt
det h ≥ inf

M×{0}

det g0
det h ≥ C

−1.

As we have established an upper bound for the induced metric on E and a lower bound on the volume form,
since the bundle E is weakly proper it now follows that the metric gt is bounded above. But again since the
volume form is bounded below it follows that gt is bounded below as well. It follows directly from Theorem
2.7 and 2.9 that the flow exists smoothly for all time and converges to a Calabi-Yau metric.

Proof of Corollary 1.7. Let (M2n , I, Jt , gt) be the solution to generalized Kähler-Ricci flow in the I-fixed gauge,
as explained in §2.3. This means that (M, I, gt) is a solution to pluriclosed flow. In either case of the Corollary,
usingTheorem1.3 or 1.5weobtain the long time existence and exponential convergence of theflow to aCalabi-
Yau manifold. In particular, the torsion is decaying exponentially to zero, and so the vector field defining the
diffeomorphisms ϕt such that Jt = ϕ*t J are converging exponentially fast to a limiting diffeomorphism ϕ∞,
and hence Jt is converging to a limit J∞. The corollary follows.
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