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1 Introduction

Let M be a compact Kihlerian manifold, and h?>9 = hP-4(M) a Hodge number of M. Then, M satisfies h?? =
h?P for each p, q by the Hodge theory. In general, a compact complex manifold does not satisfy the relations.
In the paper [10], we construct compact 4-dimensional complex manifolds M; and M, which satisfy that M
and M, are diffeomorphic, and h?*9(M1) = h?P(M,) for each p, g, namely, we consider two invariant complex
structures on a compact real nilmanifold. In this paper, we consider several invariant complex structures on
a compact real nilmanifold, and we study properties of Hodge numbers.

It is now well-known that if a compact nilmanifold I'\ N admits a Kdhler structure, then N is an abelian
groupand I'\ N is a torus, where N is a simply connected real nilpotent Lie group, and I'is alattice in N ([1], [5]).
If a compact complex parallelizable nilmanifold I'\ N admits a pseudo-Kahler structure, then N is an abelian
group by a result of Dolbeault cohomology groups of compact complex parallelizable nilmanifolds ([4, Theo-
rem 3.2], [6, Theorem 3], [9]). Thus, it is important to study properties of Hodge numbers of non-toral compact
complex nilmanifolds. As an application of main theorems (Theorems 4.2 and 4.4), we have

Theorem 1.1. Let Hg(n) be a (2n+ 1)-dimensional real Heisenberg group, and hr(n) its Lie algebra. Let hr(n)©

be the complexification of hr(n), and g (hr(n)®) a real Lie algebra obtained from hr(n)* by scalar restriction.

Moreover, let g (Hg (n)*) be the simply connected nilpotent Lie group corresponding to g (hz(n)©), and I a lattice

in g (Hr(n)®). Then there exist invariant complex structures Jo, ..., Jn on '\ (Hg(n)©) which satisfy

(1) Ifk # h, then (N\g(Hr(n)®), J;) and (IN\r(Hz (M), J),) are not biholomorphic.

Q) X g WPUD\H(n; 5)) = 3, hP*U\H(n; n - k) for each r, where T'\H(n; h) = (Mg (Hg (1)), Jp) for
each h.

2 Preliminaries

Let H be a Lie group, and | its Lie algebra. We denote by H'(§) = H"(, C) the cohomology of the complex
A" (5 of left-invariant differential forms on the Lie group H. Note that if w € (h€)", and X, Y € hC, then

dw(X,Y) = -w(X, Y.
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Let g = (g, J) be a Lie algebra with a complex structure, and gj the vector spaces of the +v/-1 eigenvec-
tors of the complex structure J, respectively. We denote by H g’l* (g(c) the cohomology ring of the differential

bigraded algebra /\*’*(gc)*, associated to g© with respect to the operator 0 ; in the canonical decomposition
d=0;+0;on \""(g%)". We write h?4(g;) = dim Hgl’q(gc). Let wy, ..., wn be a basis of (gf)". Since
(A ""0%0) = (\"(w1,..., 00, @1,...,0n), ),
it is important to investigate relations of Lie brackets and the operator 9;. Note that also
(/\O’*BC, o)) = (/\*@1, cevy @n), 0)).
For an arbitrary X € g©, set
Xf=(X-Vv-1X)/2, X;=X+V-1JX)/2,
so that X} is holomorphic type and X; is antiholomorphic type with respect to J. From now on, when there

exist no possibilities of confusion, we omit the subscript J.

Lemma2.l. Letw € (g*)", X", Y* e g*,and X", Y™ € g. Then,
1. (Qw) (X', Y)=-w(X",Y]),

2. )X ,Y)=-w(X,Y).

Proof. Letn € (g©)", and X, Y € g*. Since
(dnX,Y) = (o)X, V) + X, Y) = -n(X, YD),

we have
Qw)(X*, V) =-w(X", Y], 0&)X,Y) =-&(X ", Y.

Assume that
n n
3 k -5 k- -
oWy = Z Cijw; N Wj, 0wy = Z dij@; A @j,
i,j=1 i,j=1
fork =1,...,n, where cf-‘j,
N1, ..., N2n Which satisfies

dg- € R. Let us consider a 2n-dimensional Lie algebra h such that h” has a basis

n n
drlk = Z C{'cjni A Mnajs drln+k = Z dg'rlmi N NMnsj (k=1,...,n).

i,j=1 i,j=1
Let F be a homomorphism
F: PP A7) — PN 6)F
r p+g=r r
induced by a linear isomorphism (g%)" — (h")* defined by wy — 1, @k — Nusx (k = 1,...,n). Then,

F is an isomorphism of differential graded algebras from (,(D,, -, AP (g9, 0)) to (@, N"(h")E, d) by
Lemma 2.1. We use this fact in the proof of Theorem 4.4.

Let N be a simply connected real nilpotent Lie group whose Lie algebra n has a rational Lie subalgebra
ng such that n = ng ® R, and I' a lattice in N. A complex structure J on n is called rational if J(ng) C ng ([2]).

Theorem 2.2 ([2]). Let N be a simply connected nilpotent Lie group with a rational complex structure J. Then,
HEA(I'\N) = HY1(n®)

foreachp, q.
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3 Complex structures on nilpotent Lie groups

In this section, we consider invariant complex structures on nilpotent Lie groups.
We consider the following Lie algebra g over R:

g=axb,
where a is Lie subalgebra of g, and b is an ideal of g. Take bases of the Lie subalgebras a and b:
a = spang{U1, ..., Up},
b= SpanR{V%, ceey V(}}.
Consider the complexification g€ of g. Since g© = g + v/—1g, z(g*) has the following basis:
(ut,...,Up, Vi,..., V3, Us,..., Up, Vi,..., V3},
where U} = v-1U}, V7 = v-1V}.
Let J be the complex structure on z(g) defined by
JUi = U} QU} = -U}), JV} = Vi OV} =-V})
for each i, j. Note that (z(g*), J) is a complex Lie algebra.
We define other complex structure J on z(g€) by
Jui =-U2 JUi = UD), JVj =V} GV} =-V})
for each i, j.

Let z(G®) be the simply connected real Lie group corresponding to z(g°). Then, we have the following
proposition:

Proposition 3.1 ([10]). J is integrable on g(G®). If ] is a rational complex structure, then J is also a rational
complex structure.

Example 3.2. Let Hr(n) be a (2n+1)-dimensional real Heisenberg group and hr(n) its Lie algebra. Then bhg(n)
has a basis X1,...,Xn, Y1,..., Y, Z satisfying [X;, Y;] = Z (i = 1,..., n) with other brackets vanishing.
Consider the following Lie subalgebras of hr(n):

ap = span{Xi, ..., Xy}

by = span{Xy;1,.-->Xn, Y1,..., Yn, Z}

for each O < k < n. Then, by is an ideal of hr(n). Moreover, a; and by, satisfies hr(n) = a; + by. Hence, we have

a rational complex structure J;, corresponding to the decomposition hg(n) = a; + by. For example, in the case
of n = 1 we have

1 x 0 z 1 % z
G0 =3 [0 00 Yllxyzect={{o 1 y|xyzec
0O 0 0 1 001
1 x 0 z
Ao 30 r)neee
0O 0 0 1

See also section 8. We denote by I'\H(n; k) is a compact complex manifold (I'\g(H(n)%), J;), where I is a
lattice in g (H(n)®). Then, by a result of Console-Fino (Theorem 2.2), we have

RP9(I\H(n; k) = B4 ((z (b= (M%), J)©)
for each p, q.
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4 Invariant complex structures and Hodge numbers of compact
nilmanifolds

In this section, we assume that g, a, b, J, and J are as in section 3. Let J' = J or J. Then, we define
ﬂ;/ = g;/ N Cl(C, b;/ = g;/ n b(c.

Note that aj,, b}, are the vector spaces of the /-1 eigenvectors of complex structure J ’, respectively.

Lemma 4.1.
[o7, 051 Caf,  [b7,b5] C b7, [af,b5]=0,
[0,0;1=0, [67,6;]1=0,  [a],b5]C b7, [65,05]C b,
[a:,aj_] C aj_, [bj_,bj_] C bj_, [aj_,bj_]=0.

Proof. Since a5 = aff, b7 = bj, and [g], g1 = 0,
a7, 671 = [ay, bj] = 0.

The other cases are similar, and hence we omit proof of the other cases. O

Theorem 4.2. For each g,
ho’q(gj) = dim H9(a x b).

Proof. By Lemma 4.1,
A% @) = NG5 +67)" = A7 x 670" = A "((@)" x (7).

Since ay and a are isomorphic, and bj‘ and b are isomorphic by natural homomorphisms

fia —>aC;X7_»—>X,
.o C.y-
we can consider isomorphisms
FY @) — @) @D 6) — 6F
Let
F: A5 = \ ") % (67)) — A\ (@) = (67)°)

be ahomomorphisminduced by (f"!)" and (g™!)". Then, by Lemma 2.1, (A 0’*(g}c)*, d)and (A" ((a")°x(6")©), d)
are isomorphic as differential graded algebras by F. O
Corollary 4.3. If a and b are rational nilpotent Lie algebras, then

h*9(g;) = 4™ 974(gy)

foreach q.

Proof. Let A, B be simply connected nilpotent Lie groups corresponding to a, b, respectively. Let I'y and I'p
be lattices in A, B, respectively. Since, by Nomizu’s theorem,

dim H7(a x b) = dim HY(I'y\A = I's\B)
and Poincaré’s duality, we have
h%4(g;) = dim H(a x b) = dim H*"™ *(a x b) = h*4™ 97 (gy)

for each q. O
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Assume that

p q q
[0}, ul1=>" ckug, [0f, vl =" DiVE, Vi, Vil = EqVi
k=1 t=1 k=1

for each i, j, s and t. Let gs be a Lie algebra defined by
gs =span{Ui,..., Up, V1,..., Vq}

which satisfies
p ‘ q
(U, Ul => C§Ux, (U Vsl=> DiVi(i,j=1,...,p,5=1,...,9)
k=1 t=1

with other brackets vanishing.
Then we have

Theorem 4.4. Foreachr,
> nP(g;) = dim H'(gs x b x %™ ),
p+q=r

Proof. By Lemma 4.1, we have
d(a})* C /\Z(a})*, d(b})* C (a})* A (b})* + /\z(b})*
d@;)" c A%, d®) < \2(67)" +(a)" A (67)".
Thus, we have
A@p) < A%, 36 (@) A b)),
3" < A7),
d(a))" = {0}.

Hence, we obtain our claim by Lemma 2.1 and the argument after the proof of Lemma 2.1. O

5 Invariant complex structures and Hodge numbers of compact
nilmanifolds of a Heisenberg group

In this section, we consider Hodge numbers of a compact complex nilmanifold I'\H(n; k) = (I'\r (Hg (n)©), ]k),
where Hy(n) is a (2n + 1)-dimensional real Heisenberg group. We consider the following Lie subalgebras of

br(n):
ar = span{Xy, ..., Xy}

by = span{Xy;15---5Xn, Y1,..., Yn, Z},

which are considered in Example 3.2. We write h(n; k) = (r(hr(n)©), J), where J is the complex structure
corresponding to a decomposition hr(n) = aj + by.

Proposition 5.1. For each q,
h®9(0(n; k) = dim H(hg(n - k) x R*").

Proof. Since a; = R, and by = hr(n - k) x R¥ as Lie algebras, we have
h%9(h(n; k) = dim HY(ay x by) = dim HY(R¥ x hg(n - k) x R¥)

by Theorem 4.2. O
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Proposition 5.2. Foreachr,

S RP(0(n; K) = dim H' (ha (k) x b (n - k) x R?").
p+q=r

Proof. Since b ¥ hr(n - k) x R¥, and gs = hg (k) x R2"0, we have

> rP(b(n; k) = dim H'(gs x b x RY™©)
p+g=r
= dim H'((hr (k) x R2® ) x (hg (n - k) x R¥) x R¥)

by Theorem 4.4. O
Corollary 5.3. Foreachr,

ST R k) = Y Wb n - k).

p+g=r p+g=r

Next, we consider h?>°(h(n; k)). Since

1 x ... Xk Xks1  +++ Xn z
1 0 0 Vi
o .
H(n; k) =~ o ' ) ' o X, e X, Y1, e, Y, 2 € C Y
0O O 0 1 yn
0O O 1
we have that
k n
A = dx;, yi = dy;, v = dz—Z)'(sdys - Z xedye (i=1,...,n)
s=1 t=k+1
is a basis of left-invariant (1, 0)-forms on H(n; k). Put w; = A;, w,,; = pifori =1,...,n,and wyns1 = v. Then,
we have
0wy =-+-= 0wy, =0,
éw2n+1 =-W1 ANWnps1 =" = Wi A Wy
0@y =+++= 0@y =0,
é@2n+1 = —Wys1 N Dpsjr =+~ Wn A WDon.

Proposition 5.4. For each p,

hP°(b(n; k) = ding’o(b(n; 1)) = <2n> N ( 2n-k >
p p-k-1

forp < 2n.

Proof. Any element of
/\p<w1, ey Wy Wty ey Wop)

is 9-closed but not 0-exact. Moreover,

Won+1 AN Wnet A v o e AWpyp AWj A v o A (,l)j]g_k_1



DE GRUYTER OPEN Hodge numbers and invariant complex structures of compact nilmanifolds

is also 0-closed but not 0-exact, where 1 < j; < -+ <j, 41 < 2n. Thus,

hPO(t(ns ) = (”’) ; ( 2n-k ) .
p p-k-1

a= E Qi ...i, , Wan+1 ANWi Neoo A Wi, ,
i1<e<ip 1520

Let

be a 0-closed (p, 0)-form. Since

k
oa =— Z Z a,-l...,-p_lcbs AN Wnis AN Wi Aeoo A Wi, 5

i1<<ipg 5=1
we see that

k
Z Z Ajy iy Ws N Wnis AW A v o AWj, =0

i< e<ipog S=1

forany 1 <s < k.Thus,ifn+s ¢ {i1,...,i,-1},thena;,..;,, = 0.Hence,if {n+1,...,n+k} ¢ {i1,.
then a;,...;, , = 0. On the other hand, if {n +1,...,n+k} C {i1,...,ip-1}, then wons1 A wj, A...

o-closed. Thus, we obtain our claim.

Corollary 5.5. For each p,
RP2(h(n; 1)) = R2™1P0(h(n; 1).

— 199

cosip1ls
N wi, , 18
O

Corollary 5.6. If ky # kj, then I'\H(n; k1) and I'\H(n; k,) are not biholomorphic, where I is a lattice in the

underlying real Lie group of H(n; k1) and H(n; k).
Proof. We may assume that k; > k». By a result of Console-Fino (Theorem 2.2),

HY9(I\H(n; k;)) = H24(5(n; ))
n B n-1 + n-1
k) \k-1 k)’

2n-ky \ [ 2n-Ik kika 2n—(ky +s)
(p—kz—1>_<p—k1—1)+z(p—(kz+S)>'

s=1

for each i. Since

we have

Thus, if k, < p - 1, then h?°(h(n; k1)) # hP°°(h(n; k).

O

Recall that the minimal model for the de Rham complex (Q"(I'\N), d) of a nilmanifold I'\N is (/\* n', d) by

Nomizu’s theorem (see [5, 7]).

The dual space by (k)" of hr(k) has a basis v1, . . . , Y2x» 72x:1 Which satisfies the relations
k
dyr == dyo =0, dyaer = = Y ¥s A Vs
s=1

Lemmab5.7. Fork=>2,andp <k,

mmH%mw»=<“)—(2k>.
p p-2
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Proof. Since any element of

/\p<71, cee

dim 27 (b (k) > (i}") .

s V2k)

is d-closed, we see

Let a be a g-form such that

a= Z Qiyovig y V2ke1 AVig A v v e Aigy = Yaka A ( Z Qiyovig Yig N oo A Vig )

iy <e<igy iy <ecigg
Putf = Zi1<~~<iq,1 Aiyovig Viy N+ - - A, - Then,
da=wAp,
where w = - le(=1 s A Yiss- Let us consider
k
A O, D) and @ == 55 Ayas.
s=1

Then we can identify the pair as the minimal model for de Rham complex of 2k-dimensional torus T%* and
an invariant symplectic form on T2k, Thus, we can use an 51(2)-representation (see [11, Corollaries 2.5, 2.7,
and 2.8]). Hence, Ly : A7* — A7 B — w A Bis injective for g < k. We have that if da = w A § = 0, then
a = 0 for q < k. Therefore,

dim 27 (b (k) = (2") , dim B? (b (K) = ( 2k ) .
p p-2

By Propositions 5.1, 5.2, and Lemma 5.7, we can compute » |
we have

p+q=r

O

hP+4((n; k)) and h®9(h(n; k)). For example,

S WP ) - {Z” PO
n

p+q=1 k#0,n
35 k=0,2
> rP(p(2;10) = {
=, 30 k-1
and
8n’+2n-1 k=0,n
Z h?9(h(n; k) = { 8n? - 2n k=1,n-1
pra=2 8n2-2n-2 k+#0,1,n-1,n
2n’-n+1 k=n-1
h%2(h(n; k) = { 2n2 +n k=n
2n’-n-1 k#n,n-1
for n > 3. Moreover, we have
2n?+n k=0
WP k) ={ 2n> -n+1 k=1
2n?-n k+0,1
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4n® + 2n k=0

4n? k=1
Wk =4

4n?+2n-1 k=n

4n? -1 k+0,1,n.

Remark 5.8. (i) By a straightforward computation, we see that h?>2(h(2; 1)) satisfy the following interesting

(i)

relations:
hP9(5(2; 1)) = h°(5(2; 1)) - h*9(h(2; 1)),

hP°(h(2; 1)) = h*P(h(2; 1)),
hP9(h(2; 1)) = hP(H(2; 1))

for each p, q, where h’*° = h*° = 4 and h*° = K*° = 7. Moreover, we see S piger BP(0(25 1)) <
Zp+q=r hP-4(h(2;0)) forany 1 < r < 4.

We can directly check Propositions 5.1 and 5.2. Indeed, since
éwl =...=éw2n=0,
OWans1 = —@1 A Wt =+ — Dk A Wniks
OWy =+++= 0@, =0,
é@2n+1 = Wiy A Wpige1 =~ WOn A W2p.

for h(n; k)", we have that a differential graded algebra
(/\ <d)k+1’ ey a)n, d’n+k+1’ ey d’Zn, d)2n+1>, 5)

and a differential graded algebra (/\*(bR(n - 1T, d) are isomorphic as differential graded algebras.
Moreover,

*

(/\ <a)1) oo 'a)k’ (Dn+1, ceey a)n+k>y a)

and ( /\*((Rzk)c)*, d) are isomorphic as differential graded algebras. Since

0,* * * o _ _ _ o _
/\ (h(n;k)(c) =/\ <wk+1;---,wn;wn+k+1;---;w2n:w2n+1’ w1,-.-(Uk,CUn+1,.-.,(Un+k>,

we have h%9(h(n; k) = dim H(hg(n - k) x RZX).

Invariant complex structures and Hodge numbers of compact
nilmanifolds of a generalized Heisenberg group

In this section, we consider the case that g in Section 4 is the Lie algebra of a real generalized Heisenberg
group. Let Hgr(1, n) be a (2n + 1)-dimensional real generalized Heisenberg group and hr(1, n) its Lie alge-
bra (see [3]). Then, hg(1, n) has a basis X1,...,Xn, Y, Z1, ..., Zy satisfying [X;, Y] = Z; (i = 1, ..., n) with
other brackets vanishing. Let us consider the following Lie subalgebras of hr(1, n):

ay = span{X1, ..., Xy},
by =span{Xyi1s...,Xn, Y, Z1,...,Zn}.
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We write h(1, n; k) = (z(hr(1, n)%), J;), where J, is the complex structure corresponding to a decomposition
br(1, n) = a; + by. We write H(1, n; k) = (r(Hg(1, n)%), Ji). Then,

1 0 ... ... ... 0 )_(1 Z1
01 0 ..... 0 =
0 Xk
H(1,n; k) ~ A T I XiyeeesXn, Vs Ziseoer2n €C

o . .

. Xn  Zn
00 0o 1 y
0 0 1

Similarly as in the case of Heisenberg group, we have the following propositions. Thus, we omit these
proofs.

Proposition 6.1. For each g,
h®4(h(1, n; k)) = dim H(hz(1, n - k) x R*").
Proposition 6.2. Foreachr,

3 WP9((1, 1K) = dim B (hg(1, K) x (1, n - k) x R*").
p+q=r

Corollary 6.3. Foreachr,

> R, i) = > P06, n3n - k).

p+q=r p+q=r
WO, msh) = 27 )« (2K
p-1 p

RP0(h(1, n; 1)) = K2 1P0(h(1, n; 1)).

Proposition 6.4.

foreachl1<p<2n+1.

Corollary 6.5. Foreach p,

Corollary 6.6. If k; # k, then I'\H(1, n; k1) and I'\H(1, n; k,) are not biholomorphic, where I' is a lattice in
the underlying real Lie group of H(1, n; k1) and H(1, n; k>).
Proof. Since h*°(h(1, n; k)) = 2n - k + 1, we have our claim. O

Remark 6.7. (i) We can easily check that
1,1 2 1,, 1
h> (61, n;k)) =2n° + kn - Ek +3n- 5k+1.

(ii) We can consider other complex structures on g(Hg (1, n)°). For example, consider the following Lie sub-

algebras :
a= span{Xl, e ,Xk, Y, Zl, ceey Zk},

b =span{Xy;1,...>Xn, Zis15-++52Zn},

where O < k < n. Then, b is an ideal such that hr(1,n) =a + b.
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7 Example of high dimensional complex nilmanifolds which have
duality

In this section, we construct examples of pairs of high dimensional complex nilmanifolds M;, M, which
have duality of Hodge’s numbers, i.e., M; and M, are complex manifolds which satisfy that M; and M, are
diffeomorphic, and h?-9(M1) = h?P(M,) for each p, q.

Proposition 7.1. Let M1, M, M} and M’ be compact complex manifolds which satisfy h?*1(M;) = h?P(M,)
and h?>9(M}) = h®P(M5) for each p, q such thatp +q < k. Let L; = My x M; (i = 1, 2). Then, h?9(L,) = h?P(L,)
foreach p, q such thatp + q < k.

Proof. By the assumption,
WPA(Ly) = Y WP (MRS (MY)

a+c=p
b+d=q

-y W24 (My)h%C(Mb) = hTP(L,)

b+d=q
a+c=p

for each p, g. O

As an application of Proposition 7.1, we have examples of pairs of high dimensional complex nilmanifolds
which have duality of Hodge’s numbers.

Example 7.2. Let us consider the following nilpotent Lie groups defined by

1 = Z3 1 z Z3
N; = 0 1 z|lzieC,;, N,= 0 1 z||lzeC
0O 0 1 0O 0 1

Then, by a straightforward computation, we see h”>4(I'\N;) = h?P(I'\N,) for each p, q. Hence, we have
hP9(% I'\N1) = h%P (X '\N,)

for each p, g, where I' is a lattice in the underlying real Lie group N; = N,, and xT \N1 =I'\N7 x...xI'\Nj.
Moreover, we have
hPI(L\(Ny)) = h9P (L\(XN))

for each p, g, where L is lattice in the underlying real Lie group §N1 ~ QNz. Because hP4 (L\(QNI-)) =
hP-1 (Q I'\N;) = hp’q(gni-c) (i = 1, 2) by a result of Console-Fino (Theorem 2.2, see also [9]).

Remark 7.3. Recall that C = {(x,y)|x,y € R} has a lattice Z + TZ =~ {(m + na,nb)| m,n € Z}, where
T=a++v-1b,and a, b € Rsuchthatb > 0. Let

1 x1 X3 1 x
N={|o 1 x|/lxeRr ,A={( ‘*)

0 1
0O 0 1
Then,
1 x3 0 x3
Nx A~ 0 1 0 xp % € R
0 0 1 x4
0O 0 0 1
has a lattice
1 m O m+na
0 1 0 my
I mi,mmnetz,,
0 0 1 nb !
0O 0 O 1
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which is not direct product of lattices in N and A. Similarly, we can construct a lattice in XN which is not the
direct product of lattices in N.

8 Fibration and modification of a complex structure

In this section, we see the complex structure J from a viewpoint of fibrations.

Theorem 8.1 ([8], Theorem 1.13 in Chapter I). Let G be a second countable locally compact group and I’ a lat-
ticein G. Let H be a closed subgroup. Then if H N I' is a lattice in H, I'H is closed in G; equivalently the natural
injection

HnNI'\H — I'\G

is proper. If H is normal in G or if T is uniform then I'H is closed in G if and only if H N I is a lattice in H.

Let us consider the following nilpotent Lie group defined by

1 z1 z3 1 2
Gy = 0O 1 2z z;eC X{(Q 14) 2466}.
0O 0 1
Then,
1w ps 1
Ir= 0 1 || uieZlv-1]; x { (0 14> Uy € Z[\/—l]}
0O o0 1
is a lattice in G;. Moreover,
0 0 0 0 0
Zy = &1’22 = 32> +21&3,Za = 53,24 = 374

is a basis of left-invariant holomorphic vector fields on G, and
w1 = le, w) = de, w3 = d23 —Z1d22, Wy = dZ4
is its dual basis. Then a left-invariant holomorphic 2-form

Q=wi ANws +wy N\wy

=dzy Ndz3z +dzy Ndzy - z1dzy A dzo

on G yields an invariant holomorphic symplectic structure on I'\ G; .

Put
1 0 Z3
1 0
H-= 0 1 z||2z2,23€C X{(O 1)}
0 0 1

Then H is a closed normal subgroup of Gy, and H N I is lattice in H. Thus, HI' = T'H is closed in G; by
Theorem 8.1. Consider the following fibration:

I\HI — I'\G; —» HI'\G;.

Since
Z1

1 0
1
HG6~{|lo 1 ollzec x{(o Zl“)
0 0 1

Z4€(C},
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1 ) 251 0
HIH={ |0 1 o0]||pu czVv-1] x{((l) "‘f)mez[ﬁ]},
0 0 1

we can use (z1, z;) as alocal coordinate system on a neighborhood of each point of HI'\G; = (H\HI')\(H\G1).
More carefully, let

1 z1 z3 1 0 z3
N = 0 1 z|lzieC;,K= 0 1 z||2z,23€C
0O 0 1 0 0 1

1 z1 2z 1 0 z3 1 z1 O 1 z1 O
0 1 z|=(01 =z 0 1 0|l]— 1|0 1 O
0O 0 1 0 0 1 0O 0 1 0O 0 1
Then, it is obvious that
1 z O
K\N = 0 1 0]/z1eC
0O 0 1

The group K transitively acts 7-!(a;) on the left. Then

T(al,az,as)ﬂ_l(al) = span {(a/aZZ)(ﬁl,az,as) + al(a/az3)(a1,azya3)’ (6/623)(31,32,33)}
= span {(0/022) a, a,,a,) (0/023)(a, 2 ,25) }

with respect to the natural coordinate system (z1, 23, z3) of N. Thus, we have that each fiber of @ : I'\G; —
HTI'\G1 is a holomorphic Lagrangian submanifold of (I'\G1, Q).
= (C} ;

Hence, to consider the following modification G, of G1:
1 z 23
1 Zy
G, = 0O 1 =z z; € C ) x
(W1, wa, w3, wy) * (21, 22, 23, 24) = (21 + W1, 22 + W2, 23 + W1Z2 + W3, Z4 + W)

0 0 1

geometrically corresponds to take the conjugate of a local coordinate system (z,, z3) on each fiber, which is
a holomorphic Lagrangian submanifold of (I'\G1, Q).
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