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1 Introduction
Let M be a compact Kählerian manifold, and hp,q = hp,q(M) a Hodge number of M. Then, M satisfies hp,q =
hq,p for each p, q by the Hodge theory. In general, a compact complexmanifold does not satisfy the relations.
In the paper [10], we construct compact 4-dimensional complex manifoldsM1 andM2 which satisfy thatM1
andM2 are diffeomorphic, and hp,q(M1) = hq,p(M2) for each p, q, namely, we consider two invariant complex
structures on a compact real nilmanifold. In this paper, we consider several invariant complex structures on
a compact real nilmanifold, and we study properties of Hodge numbers.

It is now well-known that if a compact nilmanifold Γ∖N admits a Kähler structure, then N is an abelian
groupand Γ∖N is a torus,whereN is a simply connected real nilpotent Lie group, and Γ is a lattice inN ([1], [5]).
If a compact complex parallelizable nilmanifold Γ∖N admits a pseudo-Kähler structure, then N is an abelian
group by a result of Dolbeault cohomology groups of compact complex parallelizable nilmanifolds ([4, Theo-
rem 3.2], [6, Theorem 3], [9]). Thus, it is important to study properties of Hodge numbers of non-toral compact
complex nilmanifolds. As an application of main theorems (Theorems 4.2 and 4.4), we have

Theorem 1.1. Let HR(n) be a (2n+1)-dimensional real Heisenberg group, and hR(n) its Lie algebra. Let hR(n)C

be the complexification of hR(n), and R(hR(n)C) a real Lie algebra obtained from hR(n)C by scalar restriction.
Moreover, let R(HR(n)C) be the simply connected nilpotent Lie group corresponding to R(hR(n)C), and Γ a lattice
in R(HR(n)C). Then there exist invariant complex structures J̃0, . . . , J̃n on Γ∖R(HR(n)C) which satisfy
(1) If k ≠ h, then (Γ∖R(HR(n)C), J̃k) and (Γ∖R(HR(n)C), J̃h) are not biholomorphic.
(2)

∑︀
p+q=r h

p,q(Γ∖H(n; k)) =
∑︀

p+q=r h
p,q(Γ∖H(n; n − k)) for each r, where Γ∖H(n; h) = (Γ∖R(HR(n)C), J̃h) for

each h.

2 Preliminaries
Let H be a Lie group, and h its Lie algebra. We denote by H*(h) = H*(h,C) the cohomology of the complex
∧*(h*)C of left-invariant differential forms on the Lie group H. Note that if ω ∈ (hC)*, and X, Y ∈ hC, then

dω(X, Y) = −ω([X, Y]).
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Let g = (g, J) be a Lie algebra with a complex structure, and g±J the vector spaces of the ±
√
−1 eigenvec-

tors of the complex structure J, respectively. We denote by H*,*∂̄J (g
C) the cohomology ring of the differential

bigraded algebra
⋀︀*,*(gC)*, associated to gC with respect to the operator ∂̄J in the canonical decomposition

d = ∂J + ∂̄J on
⋀︀*,*(gC)*. We write hp,q(gJ) = dimHp,q∂̄J (g

C). Let ω1, . . . , ωn be a basis of (g+J )*. Since

(
⋀︁

*,*gC, ∂̄J) = (
⋀︁

*,*⟨ω1, . . . , ωn , ω̄1, . . . , ω̄n⟩, ∂̄J),

it is important to investigate relations of Lie brackets and the operator ∂̄J . Note that also

(
⋀︁ 0,*gC, ∂̄J) = (

⋀︁
*⟨ω̄1, . . . , ω̄n⟩, ∂̄J).

For an arbitrary X ∈ gC, set

X+J = (X −
√
−1JX)/2, X−J = (X +

√
−1JX)/2,

so that X+J is holomorphic type and X−J is antiholomorphic type with respect to J. From now on, when there
exist no possibilities of confusion, we omit the subscript J.

Lemma 2.1. Let ω ∈ (g+)*, X+, Y+ ∈ g+, and X−, Y− ∈ g−. Then,
1. (∂̄ω)(X+, Y−) = −ω([X+, Y−]+),

2. (∂̄ω̄)(X−, Y−) = −ω̄([X−, Y−]).

Proof. Let η ∈ (gC)*, and X, Y ∈ gC. Since

(dη)(X, Y) = (∂̄η)(X, Y) + (∂η)(X, Y) = −η([X, Y]),

we have
(∂̄ω)(X+, Y−) = −ω([X+, Y−]), (∂̄ω̄)(X−, Y−) = −ω̄([X−, Y−]).

Assume that

∂̄ωk =
n∑︁

i,j=1
ckijωi ∧ ω̄j , ∂̄ω̄k =

n∑︁
i,j=1

dkijω̄i ∧ ω̄j ,

for k = 1, . . . , n, where ckij , dkij ∈ R. Let us consider a 2n-dimensional Lie algebra h such that h* has a basis
η1, . . . , η2n which satisfies

dηk =
n∑︁

i,j=1
ckijηi ∧ ηn+j , dηn+k =

n∑︁
i,j=1

dkijηn+i ∧ ηn+j (k = 1, . . . , n).

Let F be a homomorphism
F :
⨁︁
r
(
⨁︁
p+q=r

⋀︁ p,q(gC)*) −→
⨁︁
r

⋀︁ r(h*)C

induced by a linear isomorphism (gC)* −→ (h*)C defined by ωk ↦→ ηk, ω̄k ↦→ ηn+k (k = 1, . . . , n). Then,
F is an isomorphism of differential graded algebras from (

⨁︀
r(
⨁︀

p+q=r
⋀︀ p,q(gC)*), ∂̄J) to (

⨁︀
r
⋀︀r(h*)C, d) by

Lemma 2.1. We use this fact in the proof of Theorem 4.4.

Let N be a simply connected real nilpotent Lie group whose Lie algebra n has a rational Lie subalgebra
nQ such that n ∼= nQ ⊗R, and Γ a lattice in N. A complex structure J on n is called rational if J(nQ) ⊂ nQ ([2]).

Theorem 2.2 ([2]). Let N be a simply connected nilpotent Lie group with a rational complex structure J. Then,

Hp,q∂̄ (Γ∖N) ∼= Hp,q∂̄ (nC)

for each p, q.
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3 Complex structures on nilpotent Lie groups
In this section, we consider invariant complex structures on nilpotent Lie groups.

We consider the following Lie algebra g over R:

g = an b,

where a is Lie subalgebra of g, and b is an ideal of g. Take bases of the Lie subalgebras a and b:

a = spanR{U
1
1 , . . . , U1

p},
b = spanR{V

1
1 , . . . , V1

q}.

Consider the complexification gC of g. Since gC = g +
√
−1g, R(gC) has the following basis:

{U1
1 , . . . , U1

p , V1
1 , . . . , V1

q , U2
1 , . . . , U2

p , V2
1 , . . . , V2

q},

where U2
i =

√
−1U1

i , V2
j =

√
−1V1

j .
Let J be the complex structure on R(gC) defined by

JU1
i = U2

i (JU2
i = −U1

i ), JV1
j = V2

j (JV2
j = −V1

j )

for each i, j. Note that (R(gC), J) is a complex Lie algebra.

We define other complex structure J̃ on R(gC) by

J̃U1
i = −U2

i (J̃U2
i = U1

i ), J̃V1
j = V2

j (J̃V2
j = −V1

j )

for each i, j.
Let R(GC) be the simply connected real Lie group corresponding to R(gC). Then, we have the following

proposition:

Proposition 3.1 ([10]). J̃ is integrable on R(GC). If J is a rational complex structure, then J̃ is also a rational
complex structure.

Example 3.2. LetHR(n) be a (2n+1)-dimensional real Heisenberg group and hR(n) its Lie algebra. Then hR(n)
has a basis X1, . . . , Xn, Y1, . . . , Yn , Z satisfying [Xi , Yi] = Z (i = 1, . . . , n) with other brackets vanishing.
Consider the following Lie subalgebras of hR(n):

ak = span{X1, . . . , Xk}
bk = span{Xk+1, . . . , Xn , Y1, . . . , Yn , Z}

for each 0 ≤ k ≤ n. Then, bk is an ideal of hR(n). Moreover, ak and bk satisfies hR(n) = ak + bk. Hence, we have
a rational complex structure J̃k corresponding to the decomposition hR(n) = ak + bk. For example, in the case
of n = 1 we have

(R(HR(1)C), J̃1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎝
1 x̄ 0 z
0 1 0 y
0 0 1 x̄
0 0 0 1

⎞⎟⎟⎟⎠ x, y, z ∈ C

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ∼=

⎧⎪⎨⎪⎩
⎛⎜⎝1 x̄ z
0 1 y
0 0 1

⎞⎟⎠ x, y, z ∈ C

⎫⎪⎬⎪⎭
∼=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎝
1 x̄ 0 z
0 1 0 y
0 0 1 x
0 0 0 1

⎞⎟⎟⎟⎠ x, y, z ∈ C

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

See also section 8. We denote by Γ∖H(n; k) is a compact complex manifold (Γ∖R(H(n)C), J̃k), where Γ is a
lattice in R(H(n)C). Then, by a result of Console-Fino (Theorem 2.2), we have

hp,q(Γ∖H(n; k)) = hp,q((R(hR(n)C), J̃k)C)

for each p, q.
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4 Invariant complex structures and Hodge numbers of compact
nilmanifolds

In this section, we assume that g, a, b, J, and J̃ are as in section 3. Let J′ = J or J̃. Then, we define

a±J′ = g±J′ ∩ aC, b±J′ = g±J′ ∩ bC.

Note that a±J′ , b±J′ are the vector spaces of the ±
√
−1 eigenvectors of complex structure J′, respectively.

Lemma 4.1.
[a+J̃ , a

+
J̃ ] ⊂ a+J̃ , [b+J̃ , b

+
J̃ ] ⊂ b+J̃ , [a+J̃ , b

+
J̃ ] = 0,

[a+J̃ , a
−
J̃ ] = 0, [b+J̃ , b

−
J̃ ] = 0, [a+J̃ , b

−
J̃ ] ⊂ b−J̃ , [b+J̃ , a

−
J̃ ] ⊂ b+J̃ ,

[a−J̃ , a
−
J̃ ] ⊂ a−J̃ , [b−J̃ , b

−
J̃ ] ⊂ b−J̃ , [a−J̃ , b

−
J̃ ] = 0.

Proof. Since a±J̃ = a∓J , b
±
J̃ = b±J , and [g+J , g−J ] = 0,

[a+J̃ , b
+
J̃ ] = [a−J , b+J ] = 0.

The other cases are similar, and hence we omit proof of the other cases.

Theorem 4.2. For each q,
h0,q(gJ̃) = dimHq(a × b).

Proof. By Lemma 4.1, ⋀︁ 0,*(gCJ̃ )
* =
⋀︁

*(a−J̃ + b−J̃ )
* =
⋀︁

*(a−J̃ × b
−
J̃ )
* =
⋀︁

*((a−J̃ )
* × (b−J̃ )

*).

Since a−J̃ and a are isomorphic, and b−J̃ and b are isomorphic by natural homomorphisms

f : a−J̃ −→ aC ; X−J̃ ↦→ X,

g : b−J̃ −→ bC ; Y−J̃ ↦→ Y ,

we can consider isomorphisms

(f −1)* : (a−J̃ )
* −→ (a*)C, (g−1)* : (b−J̃ )

* −→ (b*)C.

Let
F :
⋀︁ 0,*(gCJ̃ )

* =
⋀︁

*((a−J̃ )
* × (b−J̃ )

*) −→
⋀︁

*((a*)C × (b*)C)

be ahomomorphism inducedby (f −1)* and (g−1)*. Then, byLemma2.1, (
⋀︀ 0,*(gCJ̃ )

*, ∂̄) and (
⋀︀*((a*)C×(b*)C), d)

are isomorphic as differential graded algebras by F.

Corollary 4.3. If a and b are rational nilpotent Lie algebras, then

h0,q(gJ̃) = h
0,dim g−q(gJ̃)

for each q.

Proof. Let A, B be simply connected nilpotent Lie groups corresponding to a, b, respectively. Let ΓA and ΓB
be lattices in A, B, respectively. Since, by Nomizu’s theorem,

dimHq(a × b) = dimHq(ΓA∖A × ΓB∖B)

and Poincaré’s duality, we have

h0,q(gJ̃) = dimHq(a × b) = dimHdim g−q(a × b) = h0,dim g−q(gJ̃)

for each q.
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Assume that

[U1
i , U1

j ] =
p∑︁
k=1

CkijU1
k , [U

1
i , V1

s ] =
q∑︁
t=1

DtisV
1
t , [V1

s , V1
t ] =

q∑︁
k=1

EkstV1
k

for each i, j, s and t. Let gs be a Lie algebra defined by

gs = span{U1, . . . , Up , V1, . . . , Vq}

which satisfies

[Ui , Uj] =
p∑︁
k=1

CkijUk , [Ui , Vs] =
q∑︁
t=1

DtisVt (i, j = 1, . . . , p, s = 1, . . . , q)

with other brackets vanishing.
Then we have

Theorem 4.4. For each r, ∑︁
p+q=r

hp,q(gJ̃) = dimHr(gs × b ×Rdim a).

Proof. By Lemma 4.1, we have

d(a+J̃ )
* ⊂

⋀︁ 2(a+J̃ )
*, d(b+J̃ )

* ⊂ (a−J̃ )
* ∧ (b+J̃ )

* +
⋀︁ 2(b+J̃ )

*

d(a−J̃ )
* ⊂

⋀︁ 2(a−J̃ )
*, d(b−J̃ )

* ⊂
⋀︁ 2(b−J̃ )

* + (a+J̃ )
* ∧ (b−J̃ )

*.

Thus, we have
∂̄(a−J̃ )

* ⊂
⋀︁ 2(a−J̃ )

*, ∂̄(b+J̃ )
* ⊂ (a−J̃ )

* ∧ (b+J̃ )
*,

∂̄(b−J̃ )
* ⊂

⋀︁ 2(b−J̃ )
*,

∂̄(a+J̃ )
* = {0}.

Hence, we obtain our claim by Lemma 2.1 and the argument after the proof of Lemma 2.1.

5 Invariant complex structures and Hodge numbers of compact
nilmanifolds of a Heisenberg group

In this section,we considerHodgenumbers of a compact complexnilmanifold Γ∖H(n; k) = (Γ∖R(HR(n)C), J̃k),
where HR(n) is a (2n + 1)-dimensional real Heisenberg group. We consider the following Lie subalgebras of
hR(n):

ak = span{X1, . . . , Xk}
bk = span{Xk+1, . . . , Xn , Y1, . . . , Yn , Z},

which are considered in Example 3.2. We write h(n; k) = (R(hR(n)C), J̃k), where J̃k is the complex structure
corresponding to a decomposition hR(n) = ak + bk.

Proposition 5.1. For each q,
h0,q(h(n; k)) = dimHq(hR(n − k) ×R2k).

Proof. Since ak ∼= Rk, and bk ∼= hR(n − k) ×Rk as Lie algebras, we have

h0,q(h(n; k)) = dimHq(ak × bk) = dimHq(Rk × hR(n − k) ×Rk)

by Theorem 4.2.
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Proposition 5.2. For each r,∑︁
p+q=r

hp,q(h(n; k)) = dimHr(hR(k) × hR(n − k) ×R2n).

Proof. Since b ∼= hR(n − k) ×Rk, and gs = hR(k) ×R2(n−k), we have∑︁
p+q=r

hp,q(h(n; k)) = dimHr(gs × b ×Rdim a)

= dimHr((hR(k) ×R2(n−k)) × (hR(n − k) ×Rk) ×Rk)

by Theorem 4.4.

Corollary 5.3. For each r, ∑︁
p+q=r

hp,q(h(n; k)) =
∑︁
p+q=r

hp,q(h(n; n − k)).

Next, we consider hp,0(h(n; k)). Since

H(n; k) ∼=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 x̄1 . . . x̄k xk+1 . . . xn z
0 1 0 . . . . . . . . . 0 y1
... 0

. . . . . .
...

...
...

...
. . . . . . . . .

...
...

...
...

. . . . . . . . .
...

...
...

...
. . . . . . 0

...
0 0 . . . . . . . . . 0 1 yn
0 0 . . . . . . . . . . . . 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
x1, . . . , xn , y1, . . . , yn , z ∈ C

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

we have that

λi = dxi , µi = dyi , ν = dz −
k∑︁
s=1

x̄sdys −
n∑︁

t=k+1
xtdyt (i = 1, . . . , n)

is a basis of left-invariant (1, 0)-forms on H(n; k). Put ωi = λi , ωn+i = µi for i = 1, . . . , n, and ω2n+1 = ν. Then,
we have ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂̄ω1 = · · · = ∂̄ω2n = 0,
∂̄ω2n+1 = −ω̄1 ∧ ωn+1 − · · · − ω̄k ∧ ωn+k ,
∂̄ω̄1 = · · · = ∂̄ω̄2n = 0,
∂̄ω̄2n+1 = −ω̄k+1 ∧ ω̄n+k+1 − · · · − ω̄n ∧ ω̄2n .

Proposition 5.4. For each p,

hp,0(h(n; k)) = dim Zp,0∂̄ (h(n; k)C) =
(︃
2n
p

)︃
+
(︃

2n − k
p − k − 1

)︃

for p ≤ 2n.

Proof. Any element of ⋀︁ p⟨ω1, . . . , ωn , ωn+1, . . . , ω2n⟩

is ∂̄-closed but not ∂̄-exact. Moreover,

ω2n+1 ∧ ωn+1 ∧ . . . ∧ ωn+k ∧ ωj1 ∧ . . . ∧ ωjp−k−1
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is also ∂̄-closed but not ∂̄-exact, where 1 ≤ j1 < · · · < jp−k−1 ≤ 2n. Thus,

hp,0(h(n; k)) ≥
(︃
2n
p

)︃
+
(︃

2n − k
p − k − 1

)︃
.

Let
α =

∑︁
i1<···<ip−1≤2n

ai1···ip−1ω2n+1 ∧ ωi1 ∧ . . . ∧ ωip−1

be a ∂̄-closed (p, 0)-form. Since

∂̄α = −
∑︁

i1<···<ip−1

k∑︁
s=1

ai1···ip−1 ω̄s ∧ ωn+s ∧ ωi1 ∧ . . . ∧ ωip−1 ,

we see that ∑︁
i1<···<ip−1

k∑︁
s=1

ai1···ip−1 ω̄s ∧ ωn+s ∧ ωi1 ∧ . . . ∧ ωip−1 = 0

for any 1 ≤ s ≤ k. Thus, if n+ s ∉ {i1, . . . , ip−1}, then ai1···ip−1 = 0. Hence, if {n+1, . . . , n+k} ⊄ {i1, . . . , ip−1},
then ai1···ip−1 = 0. On the other hand, if {n + 1, . . . , n + k} ⊂ {i1, . . . , ip−1}, then ω2n+1 ∧ ωi1 ∧ . . . ∧ ωip−1 is
∂̄-closed. Thus, we obtain our claim.

Corollary 5.5. For each p,
hp,0(h(n; 1)) = h2n+1−p,0(h(n; 1)).

Corollary 5.6. If k1 ≠ k2, then Γ∖H(n; k1) and Γ∖H(n; k2) are not biholomorphic, where Γ is a lattice in the
underlying real Lie group of H(n; k1) and H(n; k2).

Proof. Wemay assume that k1 > k2. By a result of Console-Fino (Theorem 2.2),

Hp,q∂̄ (Γ∖H(n; ki)) ∼= Hp,q∂̄ (h(n; ki)C)

for each i. Since (︃
n
k

)︃
=
(︃
n − 1
k − 1

)︃
+
(︃
n − 1
k

)︃
,

we have (︃
2n − k2
p − k2 − 1

)︃
=
(︃

2n − k1
p − k1 − 1

)︃
+
k1−k2∑︁
s=1

(︃
2n − (k2 + s)
p − (k2 + s)

)︃
.

Thus, if k2 < p − 1, then hp,0(h(n; k1)) ≠ hp,0(h(n; k2)).

Recall that the minimal model for the de Rham complex (Ω*(Γ∖N), d) of a nilmanifold Γ∖N is (
⋀︀* n*, d) by

Nomizu’s theorem (see [5, 7]).
The dual space hR(k)* of hR(k) has a basis 𝛾1, . . . , 𝛾2k , 𝛾2k+1 which satisfies the relations

d𝛾1 = · · · = d𝛾2k = 0, d𝛾2k+1 = −
k∑︁
s=1

𝛾s ∧ 𝛾k+s .

Lemma 5.7. For k ≥ 2, and p ≤ k,

dimHp(hR(k)) =
(︃
2k
p

)︃
−
(︃

2k
p − 2

)︃
.
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Proof. Since any element of ⋀︁ p⟨𝛾1, . . . , 𝛾2k⟩

is d-closed, we see

dim Zp(hR(k)) ≥
(︃
2k
p

)︃
.

Let α be a q-form such that

α =
∑︁

i1<···<iq−1

ai1···iq−1𝛾2k+1 ∧ 𝛾i1 ∧ . . . ∧ 𝛾iq−1 = 𝛾2k+1 ∧ (
∑︁

i1<···<iq−1

ai1···iq−1𝛾i1 ∧ . . . ∧ 𝛾iq−1 ).

Put β =
∑︀

i1<···<iq−1 ai1···iq−1𝛾i1 ∧ . . . ∧ 𝛾iq−1 . Then,

dα = ω ∧ β,

where ω = −
∑︀k

s=1 𝛾s ∧ 𝛾k+s. Let us consider

(
⋀︁

*⟨𝛾1, . . . , 𝛾2k⟩, d) and ω = −
k∑︁
s=1

𝛾s ∧ 𝛾k+s .

Then we can identify the pair as the minimal model for de Rham complex of 2k-dimensional torus T2k and
an invariant symplectic form on T2k. Thus, we can use an sl(2)-representation (see [11, Corollaries 2.5, 2.7,
and 2.8]). Hence, Lω :

⋀︀q−1 −→
⋀︀q+1; β ↦→ ω ∧ β is injective for q ≤ k. We have that if dα = ω ∧ β = 0, then

α = 0 for q ≤ k. Therefore,

dim Zp(hR(k)) =
(︃
2k
p

)︃
, dim Bp(hR(k)) =

(︃
2k
p − 2

)︃
.

By Propositions 5.1, 5.2, and Lemma 5.7, we can compute
∑︀

p+q=r h
p,q(h(n; k)) and h0,q(h(n; k)). For example,

we have ∑︁
p+q=1

hp,q(h(n; k)) =
{︃
4n + 1 k = 0, n
4n k ≠ 0, n

∑︁
p+q=2

hp,q(h(2; k)) =
{︃
35 k = 0, 2
30 k = 1

and

∑︁
p+q=2

hp,q(h(n; k)) =

⎧⎪⎪⎨⎪⎪⎩
8n2 + 2n − 1 k = 0, n
8n2 − 2n k = 1, n − 1
8n2 − 2n − 2 k ≠ 0, 1, n − 1, n

h0,2(h(n; k)) =

⎧⎪⎪⎨⎪⎪⎩
2n2 − n + 1 k = n − 1
2n2 + n k = n
2n2 − n − 1 k ≠ n, n − 1

for n ≥ 3. Moreover, we have

h2,0(h(n; k)) =

⎧⎪⎪⎨⎪⎪⎩
2n2 + n k = 0
2n2 − n + 1 k = 1
2n2 − n k ≠ 0, 1
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h1,1(h(n; k)) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
4n2 + 2n k = 0
4n2 k = 1
4n2 + 2n − 1 k = n
4n2 − 1 k ≠ 0, 1, n.

Remark 5.8. (i) By a straightforward computation, we see that hp,q(h(2; 1)) satisfy the following interesting
relations:

hp,q(h(2; 1)) = hp,0(h(2; 1)) · h0,q(h(2; 1)),
hp,0(h(2; 1)) = h0,p(h(2; 1)),
hp,q(h(2; 1)) = hq,p(h(2; 1))

for each p, q, where h1,0 = h4,0 = 4 and h2,0 = h3,0 = 7. Moreover, we see
∑︀

p+q=r h
p,q(h(2; 1)) <∑︀

p+q=r h
p,q(h(2; 0)) for any 1 ≤ r ≤ 4.

(ii) We can directly check Propositions 5.1 and 5.2. Indeed, since⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∂̄ω1 = · · · = ∂̄ω2n = 0,
∂̄ω2n+1 = −ω̄1 ∧ ωn+1 − · · · − ω̄k ∧ ωn+k ,
∂̄ω̄1 = · · · = ∂̄ω̄2n = 0,
∂̄ω̄2n+1 = −ω̄k+1 ∧ ω̄n+k+1 − · · · − ω̄n ∧ ω̄2n .

for h(n; k)*, we have that a differential graded algebra

(
⋀︁*

⟨ω̄k+1, . . . , ω̄n , ω̄n+k+1, . . . , ω̄2n , ω̄2n+1⟩, ∂̄)

and a differential graded algebra (
⋀︀*(hR(n − k)*)C, d) are isomorphic as differential graded algebras.

Moreover,
(
⋀︁*

⟨ω̄1, . . . ω̄k , ω̄n+1, . . . , ω̄n+k⟩, ∂̄)

and (
⋀︀*((R2k)C)*, d) are isomorphic as differential graded algebras. Since⋀︁0,*

(h(n; k)C)* =
⋀︁*

⟨ω̄k+1, . . . , ω̄n , ω̄n+k+1, . . . , ω̄2n , ω̄2n+1, ω̄1, . . . ω̄k , ω̄n+1, . . . , ω̄n+k⟩,

we have h0,q(h(n; k)) = dimHq(hR(n − k) ×R2k).

6 Invariant complex structures and Hodge numbers of compact
nilmanifolds of a generalized Heisenberg group

In this section, we consider the case that g in Section 4 is the Lie algebra of a real generalized Heisenberg
group. Let HR(1, n) be a (2n + 1)-dimensional real generalized Heisenberg group and hR(1, n) its Lie alge-
bra (see [3]). Then, hR(1, n) has a basis X1, . . . , Xn , Y , Z1, . . . , Zn satisfying [Xi , Y] = Zi (i = 1, . . . , n) with
other brackets vanishing. Let us consider the following Lie subalgebras of hR(1, n):

ak = span{X1, . . . , Xk},
bk = span{Xk+1, . . . , Xn , Y , Z1, . . . , Zn}.
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We write h(1, n; k) = (R(hR(1, n)C), J̃k), where J̃k is the complex structure corresponding to a decomposition
hR(1, n) = ak + bk. We write H(1, n; k) = (R(HR(1, n)C), J̃k). Then,

H(1, n; k) ∼=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . . . . . . . 0 x̄1 z1

0 1 0 . . . . . . 0
...

...
... 0

. . . . . .
... x̄k

...
...

...
. . . . . . . . .

... xk+1
...

...
...

. . . . . . 0
...

...
...

...
. . . . . . xn zn

0 0 . . . . . . . . . 0 1 y
0 0 . . . . . . . . . . . . 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

x1, . . . , xn , y, z1, . . . , zn ∈ C

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Similarly as in the case of Heisenberg group, we have the following propositions. Thus, we omit these
proofs.

Proposition 6.1. For each q,

h0,q(h(1, n; k)) = dimHq(hR(1, n − k) ×R2k).

Proposition 6.2. For each r,∑︁
p+q=r

hp,q(h(1, n; k)) = dimHr(hR(1, k) × hR(1, n − k) ×R2n).

Corollary 6.3. For each r, ∑︁
p+q=r

hp,q(h(1, n; k)) =
∑︁
p+q=r

hp,q(h(1, n; n − k)).

Proposition 6.4.

hp,0(h(1, n; k)) =
(︃

2n
p − 1

)︃
+
(︃
2n − k
p

)︃
for each 1 ≤ p ≤ 2n + 1.

Corollary 6.5. For each p,
hp,0(h(1, n; 1)) = h2n+1−p,0(h(1, n; 1)).

Corollary 6.6. If k1 ≠ k2, then Γ∖H(1, n; k1) and Γ∖H(1, n; k2) are not biholomorphic, where Γ is a lattice in
the underlying real Lie group of H(1, n; k1) and H(1, n; k2).

Proof. Since h1,0(h(1, n; k)) = 2n − k + 1, we have our claim.

Remark 6.7. (i) We can easily check that

h1,1(h(1, n; k)) = 2n2 + kn − 1
2 k

2 + 3n − 1
2 k + 1.

(ii) We can consider other complex structures on R(HR(1, n)C). For example, consider the following Lie sub-
algebras :

a = span{X1, . . . , Xk , Y , Z1, . . . , Zk},
b = span{Xk+1, . . . , Xn , Zk+1, . . . , Zn},

where 0 ≤ k ≤ n. Then, b is an ideal such that hR(1, n) = a + b.
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7 Example of high dimensional complex nilmanifolds which have
duality

In this section, we construct examples of pairs of high dimensional complex nilmanifolds M1, M2 which
have duality of Hodge’s numbers, i.e., M1 and M2 are complex manifolds which satisfy that M1 and M2 are
diffeomorphic, and hp,q(M1) = hq,p(M2) for each p, q.

Proposition 7.1. Let M1,M2, M′
1 and M′

2 be compact complex manifolds which satisfy hp,q(M1) = hq,p(M2)
and hp,q(M′

1) = hq,p(M′
2) for each p, q such that p + q ≤ k. Let Li = Mi ×M′

i (i = 1, 2). Then, hp,q(L1) = hq,p(L2)
for each p, q such that p + q ≤ k.

Proof. By the assumption,
hp,q(L1) =

∑︁
a+c=p
b+d=q

ha,b(M1)hc,d(M′
1)

=
∑︁
b+d=q
a+c=p

hb,a(M2)hd,c(M′
2) = hq,p(L2)

for each p, q.

As an application of Proposition 7.1, we have examples of pairs of high dimensional complex nilmanifolds
which have duality of Hodge’s numbers.

Example 7.2. Let us consider the following nilpotent Lie groups defined by

N1 =

⎧⎪⎨⎪⎩
⎛⎜⎝1 z1 z3
0 1 z2
0 0 1

⎞⎟⎠ zi ∈ C

⎫⎪⎬⎪⎭ , N2 =

⎧⎪⎨⎪⎩
⎛⎜⎝1 z̄1 z3
0 1 z2
0 0 1

⎞⎟⎠ zi ∈ C

⎫⎪⎬⎪⎭ .

Then, by a straightforward computation, we see hp,q(Γ∖N1) = hq,p(Γ∖N2) for each p, q. Hence, we have

hp,q(n× Γ∖N1) = hq,p(
n× Γ∖N2)

for each p, q, where Γ is a lattice in the underlying real Lie group N1 ∼= N2, and
n× Γ∖N1 = Γ∖N1 × . . . × Γ∖N1.

Moreover, we have
hp,q(L∖(n×N1)) = hq,p(L∖(

n×N2))

for each p, q, where L is lattice in the underlying real Lie group n×N1 ∼=
n×N2. Because hp,q(L∖(

n×Ni)) =
hp,q(n× Γ∖Ni) = hp,q(

n×nCi ) (i = 1, 2) by a result of Console-Fino (Theorem 2.2, see also [9]).

Remark 7.3. Recall that C ∼= {(x, y) x, y ∈ R} has a lattice Z + τZ ∼= {(m + na, nb) m, n ∈ Z}, where
τ = a +

√
−1b, and a, b ∈ R such that b > 0. Let

N =

⎧⎪⎨⎪⎩
⎛⎜⎝1 x1 x3
0 1 x2
0 0 1

⎞⎟⎠ xi ∈ R

⎫⎪⎬⎪⎭ , A =
{︃(︃

1 x4
0 1

)︃
x4 ∈ R

}︃
.

Then,

N × A ∼=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎝
1 x1 0 x3
0 1 0 x2
0 0 1 x4
0 0 0 1

⎞⎟⎟⎟⎠ xi ∈ R

⎫⎪⎪⎪⎬⎪⎪⎪⎭
has a lattice

Γ ∼=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎝
1 m1 0 m + na
0 1 0 m2
0 0 1 nb
0 0 0 1

⎞⎟⎟⎟⎠ mi ,m, n ∈ Z

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,
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which is not direct product of lattices in N and A. Similarly, we can construct a lattice in n×N which is not the
direct product of lattices in N.

8 Fibration and modification of a complex structure
In this section, we see the complex structure J̃ from a viewpoint of fibrations.

Theorem 8.1 ([8], Theorem 1.13 in Chapter I). Let G be a second countable locally compact group and Γ a lat-
tice in G. Let H be a closed subgroup. Then if H ∩ Γ is a lattice in H, ΓH is closed in G; equivalently the natural
injection

H ∩ Γ∖H −→ Γ∖G

is proper. If H is normal in G or if Γ is uniform then ΓH is closed in G if and only if H ∩ Γ is a lattice in H.

Let us consider the following nilpotent Lie group defined by

G1 =

⎧⎪⎨⎪⎩
⎛⎜⎝1 z1 z3
0 1 z2
0 0 1

⎞⎟⎠ zi ∈ C

⎫⎪⎬⎪⎭ ×
{︃(︃

1 z4
0 1

)︃
z4 ∈ C

}︃
.

Then,

Γ =

⎧⎪⎨⎪⎩
⎛⎜⎝1 µ1 µ3
0 1 µ2
0 0 1

⎞⎟⎠ µi ∈ Z[
√
−1]

⎫⎪⎬⎪⎭ ×
{︃(︃

1 µ4
0 1

)︃
µ4 ∈ Z[

√
−1]
}︃

is a lattice in G1. Moreover,

Z1 =
∂
∂z 1

, Z2 =
∂
∂z 2

+ z1
∂
∂z 3

, Z3 =
∂
∂z 3

, Z4 =
∂
∂z 4

is a basis of left-invariant holomorphic vector fields on G1, and

ω1 = dz1, ω2 = dz2, ω3 = dz3 − z1dz2, ω4 = dz4

is its dual basis. Then a left-invariant holomorphic 2-form

Ω = ω1 ∧ ω3 + ω2 ∧ ω4

= dz1 ∧ dz3 + dz2 ∧ dz4 − z1dz1 ∧ dz2

on G1 yields an invariant holomorphic symplectic structure on Γ∖G1.
Put

H =

⎧⎪⎨⎪⎩
⎛⎜⎝1 0 z3
0 1 z2
0 0 1

⎞⎟⎠ z2, z3 ∈ C

⎫⎪⎬⎪⎭ ×
{︃(︃

1 0
0 1

)︃}︃
.

Then H is a closed normal subgroup of G1, and H ∩ Γ is lattice in H. Thus, HΓ = ΓH is closed in G1 by
Theorem 8.1. Consider the following fibration:

Γ∖HΓ −→ Γ∖G1 −→ HΓ∖G1.

Since

H∖G1 ∼=

⎧⎪⎨⎪⎩
⎛⎜⎝1 z1 0
0 1 0
0 0 1

⎞⎟⎠ z1 ∈ C

⎫⎪⎬⎪⎭ ×
{︃(︃

1 z4
0 1

)︃
z4 ∈ C

}︃
,
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H∖ΓH ∼=

⎧⎪⎨⎪⎩
⎛⎜⎝1 µ1 0
0 1 0
0 0 1

⎞⎟⎠ µ1 ∈ Z[
√
−1]

⎫⎪⎬⎪⎭ ×
{︃(︃

1 µ4
0 1

)︃
µ4 ∈ Z[

√
−1]
}︃
,

we canuse (z1, z4) as a local coordinate systemonaneighborhoodof eachpoint ofHΓ∖G1 ∼= (H∖HΓ)∖(H∖G1).
More carefully, let

N =

⎧⎪⎨⎪⎩
⎛⎜⎝1 z1 z3
0 1 z2
0 0 1

⎞⎟⎠ zi ∈ C

⎫⎪⎬⎪⎭ , K =

⎧⎪⎨⎪⎩
⎛⎜⎝1 0 z3
0 1 z2
0 0 1

⎞⎟⎠ z2, z3 ∈ C

⎫⎪⎬⎪⎭ .

Consider the projection π : N −→ K∖N;⎛⎜⎝1 z1 z3
0 1 z2
0 0 1

⎞⎟⎠ =

⎛⎜⎝1 0 z3
0 1 z2
0 0 1

⎞⎟⎠
⎛⎜⎝1 z1 0
0 1 0
0 0 1

⎞⎟⎠ ↦−→

⎛⎜⎝1 z1 0
0 1 0
0 0 1

⎞⎟⎠ .

Then, it is obvious that

K∖N ∼=

⎧⎪⎨⎪⎩
⎛⎜⎝1 z1 0
0 1 0
0 0 1

⎞⎟⎠ z1 ∈ C

⎫⎪⎬⎪⎭ .

The group K transitively acts π−1(a1) on the left. Then

T(a1 ,a2 ,a3)π
−1(a1) = span

{︀
(∂/∂z2)(a1 ,a2 ,a3) + a1(∂/∂z3)(a1 ,a2 ,a3), (∂/∂z3)(a1 ,a2 ,a3)

}︀
= span

{︀
(∂/∂z2)(a1 ,a2 ,a3), (∂/∂z3)(a1 ,a2 ,a3)

}︀
with respect to the natural coordinate system (z1, z2, z3) of N. Thus, we have that each fiber of ϖ : Γ∖G1 −→
HΓ∖G1 is a holomorphic Lagrangian submanifold of (Γ∖G1, Ω).

Hence, to consider the following modification G2 of G1:

G2 =

⎧⎪⎨⎪⎩
⎛⎜⎝1 z1 z̄3
0 1 z̄2
0 0 1

⎞⎟⎠ zi ∈ C

⎫⎪⎬⎪⎭ ×
{︃(︃

1 z4
0 1

)︃
z4 ∈ C

}︃
;

(w1, w2, w3, w4) * (z1, z2, z3, z4) = (z1 + w1, z2 + w2, z3 + w̄1z2 + w3, z4 + w4)

geometrically corresponds to take the conjugate of a local coordinate system (z2, z3) on each fiber, which is
a holomorphic Lagrangian submanifold of (Γ∖G1, Ω).
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