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Abstract: This article gives an exposition of the deformation theory for pairs (X, E), where X is a compact

complexmanifold and E is a holomorphic vector bundle over X, adapting an analytic viewpoint à la Kodaira-
Spencer. By introducing and exploiting an auxiliary differential operator, we derive the Maurer–Cartan equa-

tion and differential graded Lie algebra (DGLA) governing the deformation problem, and express them in

terms of differential-geometric notions such as the connection and curvature of E, obtaining a chain level

refinement of the classical results that the tangent space and obstruction space of the moduli problem are

respectively given by the first and second cohomology groups of the Atiyah extension of E over X. As an ap-
plication, we give examples where deformations of pairs are unobstructed.

1 Introduction

The theory of deformations of pairs (X, E), where X is a compact complex manifold and E is a holomorphic

vector bundle over X, has been studied using both algebraic [9, 15, 16, 21] and analytic [6, 22] approaches and
is well-understood among experts. In this mostly expository paper, we revisit this problem from a viewpoint

à la Kodaira-Spencer [11–13], emphasizing the use of differential-geometric notions such as connections and

curvatures of E and the induced differential operators. What we obtain is a chain level refinement of the

classical results.

To illustrate our strategy, recall that a family of deformations {Xt}t∈∆ of a compact complex manifold X
over a small ball ∆ can be represented by elements {φt}t∈∆ ⊂ Ω0,1

(TX), where TX is the holomorphic tangent

bundle of the complex manifold X. While the Dolbeault operator
¯∂t : Ω0

Xt → Ω0,1

Xt on Xt is not easy to write
down explicitly, one may consider the more convenient operator

¯∂ + φty∂ : Ω0

X → Ω0,1

X .

Although
¯∂ + φty∂ is not the same as

¯∂t, their kernels coincide (see Proposition 3.1), and hence
¯∂ + φty∂

completely determines the local holomorphic functions with respective to the complex structure Jt on Xt. In
fact, we have Ω0,1

Xt = (id − φ̄*t )Ω0,1

X and the commutative diagram

Ω0

X

¯∂+φty∂   

¯∂t // Ω0,1

Xt

πt
��

Ω0,1

X

where πt is the inverse of the canonical projection Pt : Ω0,1

X ⊂ Ω1

X → Ω0,1

Xt (see the proof of Proposition 3.13);

in this way we can compute everything in terms of the holomorphic structure on X.
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The same idea can be applied to deformations of pairs. First of all, given a family of deformations

{(Xt , Et)}t∈∆ of (X, E), we have a family of elements {φt}t∈∆ ⊂ Ω0,1

(TX) since {Xt} is in particular a family

of deformations of X. Using a smooth trivialization, we may further assume that E
0

∼
= E as smooth complex

vector bundles. By choosing a hermitian metric on E and considering the associated Chern connection, we

define a differential operator

¯Dt : Ω0,q
X (E) → Ω0,q+1

X (E),

which satisfies the Leibniz rule and
¯D2

t = 0 (see Section 3 for details). While
¯Dt is certainly not the Dolbeault

operator
¯∂Et on the holomorphic bundle Et, its kernel gives precisely the space of holomorphic sections of Et

over Xt, and similar to the case when E = OX (the trivial line bundle), we have a commutative diagram

Ω0

X(E)

¯Dt ##

¯∂Et // Ω0,1

Xt (E)

πt
��

Ω0,1

X (E)

relating the operators
¯Dt and ¯∂Et . Furthermore,

¯Dt determines a family of elements

At := ¯Dt − ¯∂E − φty∇ ∈ Ω0,1

(End(E));

conversely, given any family of pairs of elements At ∈ Ω0,1

(End(E)), φt ∈ Ω0,1

(TX), we can set

¯Dt := ¯∂E + φty∇ + At .

The upshot is the following Newlander–Nirenberg-type theorem for deformations of pairs:

Theorem 1.1 (=Theorem 3.12). Given φt ∈ Ω0,1

(TX) and At ∈ Ω0,1

(End(E)), if the induced differential oper-
ator ¯Dt defined above satisfies ¯D2

t = 0, then it defines a holomorphic pair (Xt , Et) (i.e. an integrable complex
structure Jt on X together with a holomorphic bundle structure on E over (X, Jt)).

Applying this, we derive theMaurer–Cartan equation:

Theorem 1.2 (=Theorem 3.17). Givenaholomorphic pair (X, E)anda smooth family of elements {(At , φt)}t∈∆ ⊂
Ω0,1

(A(E)). Then (At , φt) defines a holomorphic pair (Xt , Et) if and only if the Maurer–Cartan equation

¯∂A(E)(At , φt) +
1

2

[(At , φt), (At , φt)] = 0

is satisfied. Here, A(E) is theAtiyah extension of E which is equipped with the Dolbeault operator ¯∂A(E), and the
bracket [−, −] is defined in terms of connections and curvatures on E in Proposition 3.14.

Moreover, the triple (Ω0,•

(A(E)), ¯∂A(E), [−, −]) forms a differential graded Lie algebra (DGLA), which (as ex-

pected) is naturally isomorphic to the one obtained by algebraic means [16, 21] (see Appendix A). At this

point, we should mention that the relation between deformation theories and DGLAs was first recognized in

[19] by Nijenhuis and Richardson; later, it was suggested by Goldman andMillson [3, 4] andmany others that

deformation problems should always be controlled by DGLAs and solutions to the associated Maurer–Cartan

equations form moduli spaces of the deformation problems.

From the Maurer–Cartan equation, we deduce that the space of first order deformations of (X, E) is given
by thefirst cohomology groupH0,1

¯∂A(E)
∼
= H1

(X, A(E)) (see Section4), and that the obstruction theory is captured
by the Kuranishi map

Ob
(X,E) : U ⊂ H1

(X, A(E)) → H2

(X, A(E)),
m∑︁
i=1
ti(Ai , φi) ↦→ H[(At , φt), (At , φt)],
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whence obstructions lie inside the second cohomology group H0,2

¯∂A(E)
∼
= H2

(X, A(E)) (see Section 5). Here, U is

a small open neighborhood of the origin 0 ∈ H1

(X, A(E)). We also give a proof of the existence of a locally

complete (or versal) family (see Theorem 6.2; cf. [22]) using an analytic method originally due to Kuranishi

[14].

Next we apply this analytic approach to look for situations where deformations of holomorphic pairs are

unobstructed (Section 7). The main tool is the following proposition relating deformations of the pair (X, E)
to that of X and E, which first appeared in [7, Appendix A] without proof:

Proposition 1.3 (=Proposition 7.1). Denote the Kuranishi obstruction maps of the deformation theory of X, E
and (X, E) by ObX , ObE and Ob(X,E) respectively. Then we have the following commutative diagram:

· · ·
// H1

(X, End(E))

ObE
��

ι* // H1

(X, A(E))

Ob
(X,E)
��

π* // H1

(X, TX)

ObX
��

δ //
· · ·

· · ·
// H2

(X, End(E)) ι* // H2

(X, A(E)) π* // H2

(X, TX)
δ //

· · ·

Here, the connecting homomorphism δ is given by contracting with the Atiyah class:

δ(φ) = φy[F∇].

Remark 1.4. The vertical maps (Kuranishi maps) in the above proposition are understood to be defined on
small neighborhoods around the origins of the corresponding cohomology groups.

Applying this proposition, we obtain results which generalize some of those in the recent work of X. Pan [20]

(where only the case when E is a line bundle was considered). We also prove that when X is a K3 surface and
E is a good bundle over X with c

1
(E) ≠ 0 (Proposition 7.7), deformations of pairs (X, E) are unobstructed.

Remark 1.5. AӔer we posted an earlier version of this article on the arXiv, Carl Tipler informed us that the paper
[6] of L. Huang already contained most of our results, although we have more detailed expositions of first order
deformations (Section 4) and the proof of existence of Kuranishi families (Section 6) than Huang’s paper andwe
have a comparison with the algebraic approach (Appendix A) showing in particular that the isomorphism class
of the DGLA is independent of the choice of hermitian metric on E. As a result, this article should be regarded
as largely expository.

2 Connections, curvature and the Atiyah class

In this section, we review some basic notions in the theory of holomorphic vector bundles over complex

manifolds and fix our notations. Excellent references for these materials include the textbooks [5, 8].

Let E be a complex vector bundle over a smooth manifold X. For k ≥ 0, we denote by Ωk the sheaf of
k-forms and by Ωk(E) the sheaf of E-valued k-forms over X. Recall that a connection on E is a C-linear sheaf
homomorphism∇ : Ω0

(E) → Ω1

(E) satisfying the Leibniz rule:

∇(f · s) = df ⊗ s + f ·∇s

for f ∈ Ω0

and s ∈ Ω0

(E). We extend∇ naturally to∇ : Ωk(E) → Ωk+1(E) by defining

∇(α ⊗ s) = dα ⊗ s + (−1)kα ∧∇s

for α ∈ Ωk and any s ∈ Ω0

(E). The curvature

F∇ = ∇ ∘∇ : Ω0

(E) → Ω2

(E)
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of∇ can then be regarded as a global End(E)-valued 2-form. Also,∇ induces a natural connection on End(E)
by

(∇A)(s) = ∇(As) − A(∇s),

where A ∈ Ω0

(End(E)) and s ∈ Ω0

(E), and we have the Bianchi identity

∇F∇ = 0.

Now suppose that X is a complex manifold. For p, q ≥ 0, we denote by Ωp,q the sheaf of (p, q)-forms

and by Ωp,q(E) the sheaf of E-valued (p, q)-forms over X. Recall that a holomorphic structure on a complex

vector bundle E over X is uniquely determined by a C-linear operator ¯∂E : Ω0

(E) → Ω0,1

(E) satisfying the
Leibniz rule and the integrability condition

¯∂2E = 0. If we further equip E with a hermitian metric h, then
there exists a unique connection∇ on E which is hermitian (i.e. dh(s

1
, s

2
) = h(∇s

1
, s

2
) + h(s

1
,∇s

2
) for any

s
1
, s

2
∈ Ω0

(E)) and compatible with the holomorphic structure on E (i.e. ∇0,1

=
¯∂E, where ∇0,1

= Π0,1 ∘ ∇
and Πp,q : Ωp+q(E) → Ωp,q(E) is the natural projection map). ∇ is usually called the Chern connection on
(E, h). The curvature F∇ of the Chern connection on (E, h) is real and of type (1, 1), so the Bianichi identity
implies that

¯∂
End(E)F∇ = 0, and thus this defines a class

[F∇] ∈ H1,1

(X, End(E)),

called the Atiyah class of E [1]. We have the following lemma.

Lemma 2.1 ([8], Proposition 4.3.10). The Atiyah class is independent of the choice of the Hermitian metric.

Using the Atiyah class, one can define an extension of End(E) by TX; indeed, in the language of alge-

braic geometry, we can interpret the Atiyah class as an element in the extension group Ext

1

(E ⊗ TX , E) =
Ext

1

(TX , End(E)). Consider the smooth vector bundle A(E) := End(E) ⊕ TX and the differential operator

¯∂A(E)B : Ω
0

(A(E)) → Ω0,1

(A(E)) on A(E) defined by

¯∂A(E)B :=
(︃
¯∂
End(E) B
O ¯∂TX

)︃
,

where B ∈ Ω0,1

(Hom(TX , End(E))) acts on Ω0

(TX) by

B ∧ φ := −(−1)

|φ|φyF∇.

To simplify notations, from this point on, we will denote the vector bundles End(E) and Hom(TX , End(E)) by
Q and H respectively unless specified otherwise.

Proposition 2.2. B ∈ Ω0,1

(H) is ¯∂H-closed.

Proof. This follows from the Bianchi identity
¯∂QF∇ = 0: For any v ∈ TX,

(
¯∂HB)(v) = ¯∂Q(Bv) + B(¯∂TX v) = −¯∂Q(vyF∇) + ¯∂TX vyF∇ = vy¯∂QF∇ = 0.

Proposition 2.3.
(︀
A(E), ¯∂A(E)B

)︀
defines a holomorphic vector bundle over X whose holomorphic structure de-

pends only on the class [B].

Proof. Clearly ¯∂A(E)B satisfies the Leibniz rule, so it suffices to prove that
¯∂2A(E)B = 0. But

¯∂2A(E)B = 0 if and only

if
¯∂HB = 0 which holds by Proposition 2.2. This proves the first part of the proposition.

To see the second part, suppose that B′ − B =
¯∂H f for some f ∈ Hom(TX , Q). Define the smooth bundle

isomorphism F : A(E) → A(E) by
F : (A, v) ↦−→ (A − fv, v),
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and extend to A(E)-valued p-forms. We compute

¯∂A(E)B′ F(A, v) = (
¯∂Q(A − fv) + B′v, ¯∂TX v) = (

¯∂QA − ¯∂Q fv + Bv + ¯∂H fv, ¯∂TX v)

= (
¯∂QA + Bv − f ¯∂TX v, ¯∂TX v) = F¯∂A(E)B (A, v).

Hence F in fact defines a holomorphic bundle isomorphism between (A(E), ¯∂A(E)B ) and (A(E), ¯∂A(E)B′ ). Since
the curvature F∇ differs by an exact End(E)-valued 1-form if another metric was used, this shows that the

holomorphic structure of A(E)B only depends on the class [B] but not the metric.

Remark 2.4. Under the Dolbeault isomorphism

H1

(X,Hom(TX , Q)) ∼= H1,1

(X, Q),

the class [B] corresponds to the Atiyah class [F∇]. Hence the holomorphic structure of A(E) depends only on the
Atiyah class of E.

By abuse of notations, we will now write
¯∂A(E)B simply as

¯∂A(E), keeping in mind that a hermitian metric on E
has been chosen.

Definition 2.5. The holomorphic vector bundle
(︀
A(E), ¯∂A(E)

)︀
, which is an extension of Q = End(E) by TX , is

called the Atiyah extension of E.

3 Maurer–Cartan equations

In this section, we start our study of the deformation theory of pairs (X, E). Our goal is to derive the DGLA and

Maurer–Cartan equation which govern this deformation problem.

3.1 Deformations of complex structures and holomorphic vector bundles

We begin by a brief review of the classical theory of deformations of complex structures and holomorphic

vector bundles; the textbooks [11] and [10] are classic references for these theories respectively.

We first recall that a family of deformations π : X → ∆ of a compact complex manifold X can be rep-

resented by a family of sections φt ∈ Ω0,1

(TX), where TX is the holomorphic tangent bundle of X (or the

i-eigenbundle of the almost complex structure defining X), satisfying the Maurer–Cartan equation

¯∂TXφt +
1

2

[φt , φt] = 0. (1)

Anessential ingredient in theproof is theNewlander–NirenbergTheorem [18]which states that any integrable

almost complex structure comes from a complex structure.

Proposition 3.1. Define an operator ¯∂+φty∂ : Ω0 → Ω0,1 by f ↦→ ¯∂f+φty(∂f ), where ydenotes the contraction
or interior product. Then a local smooth function f is holomorphic on Xt if and only if

(︀
¯∂ + φty∂

)︀
f = 0, i.e.

¯∂t f = 0 ⇐⇒
(︀
¯∂ + φty∂

)︀
f = 0,

where ¯∂t is the ¯∂-operator of the complex manifold Xt.

Proof. Let z1, . . . , zn be local holomorphic coordinates on X (where n is the complex dimension of X). Then
φt is of the form ¹

φt = φji(z, t)dz̄
i ⊗ ∂

∂zj .

1 The Einstein summation convention will be used throughout this article.
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Hence T0,1Xt is locally spanned by

∂
∂z̄i + φ

j
i(z, t)

∂
∂zj .

The result follows.

Next we recall the deformation theory of holomorphic vector bundles. Let E → X be a complex vector bundle

over a complex manifold X. It is a standard fact in complex geometry that E admits a holomorphic structure

if and only if there exists a linear operator
¯∂E : Ω0,q

(E) → Ω0,q+1
(E) satisfying ¯∂2E = 0 and the Leibniz rule

¯∂E(α ⊗ s) = ¯∂α ⊗ s + (−1)|α|α ∧ ¯∂E(s),

for any α ∈ Ω0,q
(E) and smooth section s of E (we call this the linearized version of the Newlander–Nirenberg

Theorem; see e.g. [8, Theorem 2.6.26] or [17, Theorem 3.2]). Hence if we have a family of holomorphic vector

bundles E → ∆ (or {Et}t∈∆) on X, then we have a family of Dolbeault operators
¯∂Et , whose squares are zero

and all satisfy the Leibniz rule.

Proposition 3.2. Given a family of deformations {Et}t∈∆ of E, the element At := ¯∂Et − ¯∂E ∈ Ω0,1

(End(E))
satisfies the Maurer–Cartan equation

¯∂End(E)At +
1

2

[At , At] = 0

for all t ∈ ∆. Conversely, if we are given a family {At}t∈∆ ⊂ Ω0,1

(End(E)) which satisfies the Maurer–Cartan
equation for each t, then

{︀
(E, ¯∂E + At)

}︀
t∈∆ defines a family of deformations of E.

Proof. Note that
(
¯∂E + At)2 = ¯∂EAt + At ¯∂E + At ∧ At = ¯∂

End(E)At +
1

2

[At , At].

The result follows from the linearized version of the Newlander–Nirenberg Theorem.

3.2 Deformations of holomorphic pairs and the operator D̄t

Definition 3.3. A holomorphic pair (X, E) consists of a compact complex manifold X together with a holomor-
phic vector bundle E over X.

Definition 3.4. Let (X, E) be a holomorphic pair. A family of deformations of (X, E) over a small ball ∆ centered
at the origin in Cd consists of a proper and submersive holomorphic map π : X → ∆ (a family of deformations
of X over ∆) and a holomorphic vector bundle E → X such that π−1(0) = X and E|π−1(0) = E. For t ∈ ∆, we denote
by (Xt , Et) the holomorphic pair parametrized by t.

By the theorem of Ehresmann, if ∆ is chosen to be small enough, the family X is smoothly trivial, i.e. one

can find a diffeomorphism F : X → ∆ × X. Restricting to a fiber Xt ⊂ X, one can push forward the complex

structure on Xt to define Jt on Xt := {t} × X via F. One can also trivialize E as ∆ × E by a smooth bundle

isomorphism P and the holomorphic structure on Et := {t} × E is induced from that on E|Xt via the map P.
Hence we can assume that our family is a smoothly trivial family ∆ × E → ∆ × X over a small ball ∆ in Cd

centered at the origin.

Now let {(Xt , Et)}t∈∆ be a family of deformations of (X, E). By definition, {Xt}t∈∆ is a family of deforma-

tions of X, so it can be represented by an analytic family of sections φt ∈ Ω0,1

(TX) satisfying the Maurer–
Cartan equation (1). Define the operator

¯Dt : Ω0,q
(E) → Ω0,q+1

(E) by

¯Dt(skek) = (
¯∂ + φty∂)sk ⊗ ek ,

where {ek} is a local holomorphic frame of Et.
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Proposition 3.5. The linear operator ¯Dt is well-defined, that is, independent of the local holomorphic frame of
Et. Moreover, it satisfies the Leibniz rule

¯Dt(α ⊗ s) = (
¯∂ + φty∂)α ⊗ s + (−1)|α|α ∧ ¯Dt(s)

for any s ∈ Ω0

(E) and α ∈ Ω0,*

(X). Also, ¯Dt(s) = 0 if and only if ¯∂Et (s) = 0.

Proof. Toprovewell-definedness,weneed to show that
¯Dt is independent of the choice of a local holomorphic

frame {ek} of Et. So suppose {fj} is another local holomorphic frame of Et. Let τkj be local holomorphic

functions on Xt such that fj = τkj ek. Then for a local section s = skek = ̃︀sj fj, we have ̃︀sj = skτjk and thus
¯Dt(̃︀sj fj) = (

¯∂ + φty∂)̃︀sj ⊗ fj = (
¯∂ + φty∂)(skτjk)⊗ fj

= (
¯∂ + φty∂)sk ⊗ τjk fj = ¯Dt(skek).

Hence
¯Dt is well-defined.

The Leibniz rule for
¯Dt is clear since ¯∂ and ∂ both satisfy the usual Leibniz rule. Finally, for a smooth

section s of E, if we write s = skek locally with {ek} a local holomorphic frame of Et, then we have

¯Dt(s) = 0 ⇐⇒ (
¯∂ + φty∂)sk = 0 ⇐⇒ ¯∂tsk = 0 ⇐⇒ ¯∂Et (s) = 0.

We claim that
¯D2

t = 0. By our definition of
¯Dt, for any smooth function f : X → C and local nowhere vanishing

holomorphic section e of Et, we have

¯D2

t (fe) = (
¯∂ + φty∂)2f ⊗ e.

To compute the right hand side, we need the following

Lemma 3.6. For any φ ∈ Ω0,p
(TX) and α ∈ Ω1

(E), we have the Leibniz rule

¯∂E(φyα) = ¯∂TXφyα − (−1)
pφy¯∂Eα.

Proof. Writing φ = φiJdz̄J ⊗ ∂
∂zi , we have

φyα = φiJdz̄J ⊗ α
(︂
∂
∂zi

)︂
.

Let αi := α( ∂∂zi ) ∈ Ω
0

(E). Then

¯∂E(φyα) = (
¯∂φiJ ∧ dz̄J)⊗ αi + (−1)pφiJdz̄J ∧ ¯∂Eαi

=
¯∂TXφyα + (−1)

pφiJdz̄J ∧ ¯∂Eαi .

To compute the last term, first note that the contraction of

∂
∂zi with α is taken in the (1, 0)-part, we can there-

fore assume α = αki dzi ⊗ ek, where {ek} is a local holomorphic frame of E. So we have

φiJdz̄J ∧ ¯∂Eαi = −φiJdz̄J ∧
(︂
∂
∂zi y

¯∂αkl ∧ dzl
)︂

⊗ ek

= −φiJdz̄J ⊗
∂
∂zi y

¯∂E(αkl dzl ⊗ ek) = −φy¯∂Eα,

and hence the desired formula.

We can now compute
¯D2

t .

Lemma 3.7. For any smooth function, f : X → C, we have the equality

(
¯∂ + φty∂)2f =

(︂
¯∂TXφt +

1

2

[φt , φt]
)︂
y∂f .
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Proof. First, we have
(
¯∂ + φty∂)2f = ¯∂(φty∂f ) + φty∂¯∂f + φty∂(φty∂f ).

By Lemma 3.6, the first term is given by

¯∂(φty∂f ) = ¯∂TXφty∂f + φty¯∂∂f .

Since ∂¯∂ = −¯∂∂, we have
¯∂(φty∂f ) + φty∂¯∂f = ¯∂TXφty∂f .

For the last term, by writing φt = φlmdz̄m ⊗ ∂
∂zl in local coordinates, we have

φty∂f = φlm
∂f
∂zl

dz̄m ,

and so

φty∂(φty∂f ) = φij
∂φlm
∂zi

∂f
∂zl

dz̄j ∧ dz̄m + φijφlm
∂2f
∂zi∂zl

dz̄j ∧ dz̄m

But

φijφlm
∂2f
∂zi∂zl

dz̄j ∧ dz̄m = −φlmφij
∂2f
∂zl∂zi

dz̄m ∧ dz̄j ,

so we obtain

φty∂(φty∂f ) = φij
∂φlm
∂zi

∂f
∂zl

dz̄j ∧ dz̄m =

1

2

[φt , φt]y∂f .

The result follows.

As {Xt}t∈∆ is an honest family of deformations of X, the Maurer–Cartan equation (1) for φt holds. Hence we
have

Proposition 3.8. ¯D2

t = 0.

From the viewpoint of Proposition 3.1, it is natural to compare the operator
¯Dt with ¯∂E + φty∇.

Proposition 3.9. At := ¯Dt − ¯∂E − φty∇ ∈ Ω0,1

(End(E)).

Proof. Let f be a smooth function and s a smooth section of E. Using the Leibniz rules, and the fact that the
contraction is only taken in the (1, 0)-part, we have

At(fs) = (
¯∂ + φty∂)f ⊗ s + f ¯Dt(s) − ¯∂f ⊗ s − f ¯∂E(s) − φty∇(fs)

= (φty∂)f ⊗ s + f ¯Dt(s) − f ¯∂E(s) − φtydf ⊗ s − fφty∇(s) = fAt(s).

In the other direction, suppose we are now given elements At ∈ Ω0,1

(End(E)) and φt ∈ Ω0,1

(TX), parameter-

ized by t ∈ ∆, we can then define an operator ¯Dt : Ω0

(E) → Ω0,1

(E) by

¯Dt := ¯∂E + φty∇ + At .

We extend
¯Dt to Ω0,q

(E) in the obvious way, so that the Leibniz rule

¯Dt(α ⊗ s) = (
¯∂ + φty∂)α ⊗ s + (−1)|α|α ∧ ¯Dts

holds. We want to show that if
¯D2

t = 0, then (At , φt) defines a holomorphic pair (Xt , Et). First of all, we have

Proposition 3.10. If ¯D2

t = 0, then Xt is a complex manifold.
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Proof. Using the Leibniz rule, we have for any smooth function and sections of E that

0 =
¯D2

(fs) = (
¯∂ + φty∂)2f ⊗ s.

Hence (
¯∂ + φty∂)2 = 0, which is equivalent to the Maurer–Cartan equation (1) by Lemma 3.7. Therefore, the

almost complex structure defined by φt is integrable.

We now need to show that E also admits a holomorphic structure over Xt. We will follow the approach of [17].

Let us first make the following assertion:

Any smooth sections of E can locally be written as skek,

where {ek} ⊂ ker(
¯Dt). We can then define

¯∂Et by

¯∂Et (s
kek) := ¯∂tsk ⊗ ek .

To check that it is well-defined, suppose we have another local basis {fj} ⊂ ker(
¯Dt), then there exist (hkj ) such

that fj = hkj ek. Applying ¯Dt, we have
(
¯∂ + φty∂)hkj ⊗ ek = 0.

Since {ek} is assumed to be a local basis, we have (
¯∂ + φty∂)hkj = 0, which is equivalent to

¯∂thkj = 0. Hence

¯∂Et (̃︀sj fj) = ¯∂t̃︀sj ⊗ fj = ¯∂t(skhjk)⊗ fj = ¯∂t(sj)⊗ hjk fj = ¯∂Et (s
kek).

This proves well-definedness.

Clearly, it satisfies the Leibniz rule

¯∂Et (α ⊗ s) = ¯∂tα ⊗ s + (−1)|α|α ∧ ¯∂Et s

and
¯∂2Et = 0 since φt defines an integrable complex structure on X. Hence by the linearized version of the

Newlander–Nirenberg Theorem, Et = (E, ¯∂Et ) is a holomorphic vector bundle over Xt.
It remains to prove that our assertion is correct:

Lemma 3.11. ker( ¯Dt) generates Ω0

(E) locally.

Proof. Let us first fix a smooth local frame {σk} of Et over a coordinate neighborhood U ⊂ Xt. What we need

are coordinate changes (f ij (z, t)) ∈ Γsm(U, GLr(C)) such that f ij σi ∈ ker(
¯Dt). Writing

¯Dtσi = τki ⊗ σk with
τki ∈ Ω0,1

(X), the existence of (f ij (z, t)) is equivalent to

0 =
¯Dt(f ij σi) = (

¯∂f ij + φty∂f ij )⊗ σi + f ij τki σk .

This in turn is equivalent to the following system of PDEs

(
¯∂ + φty∂)f kj + f ij τki = 0

subject to the condition:

¯D2

t = 0 ⇐⇒ (
¯∂ + φty∂)τij = τik ∧ τkj .

We will show that this system is solvable, following the line of proof in [17, Theorem 9.2] (linearized version

of the Newlander–Nirenberg Theorem).

First of all we set

N := U ×Cr , T := span{dzα − φtydzα , dwi − τki wk}.

We want to show that d(T) ⊂ Ω0

(

⋀︀
1

C N) ∧ T. First we have

d(dzα − φtydzα) =
∂φαβ
∂z𝛾 dz̄

β ∧ dz𝛾 − ¯∂TXφtydz
α
.
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Then applying the Maurer–Cartan equation (1) gives

d(dzα − φtydzα) =
∂φαβ
∂z𝛾 dz̄

β ∧
(︂
dz𝛾 − φµηdz̄η ⊗

∂
∂zµ ydz

𝛾

)︂
=

∂φαβ
∂z𝛾 dz̄

β ∧ (dz𝛾 − φtydz𝛾).

Secondly,

d(dwi − τliwl) = −∂τliwl − ¯∂τliwl + τli ∧ dwl
= −(∂ − φty∂)τliwl − (¯∂ + φty∂)τliwl + τli ∧ dwl
= −(∂ − φty∂)τliwl − τki ∧ τlkwl + τli ∧ dwl
= −(∂ − φty∂)τliwl − τki ∧ (dwk − τlkwl).

Hence by the Newlander–Nirenberg Theorem, we obtain holomorphic coordinates (ζ αt , uti ) on N and

smooth functions Fαβ (ζt) = F
α
β (z, t), F

l
i(ζt , ut) = F li(z, u, t), and F lα(ζt , ut) = Flα(z, w, t) such that{︃

dζ αt =Fαβ (z, t)(dz
β
− φtydzβ),

dutl =F
i
l(z, w, t)(dwi − τki wk) + Flα(z, w, t)(dzα − φtydzα).

Since {dzα − φtydzα , dwi − τki wk} and {dζ αt , duit} are basis of T, we see that the (n + r) × (n + r)-matrix(︃
(Fαβ ) (Fiα)
Or×n (F il)

)︃

is invertible for all (z, w, t). It follows that (F il) is also invertible for all (z, w, t).
Applying the exterior differential on N and evaluating at w = 0, we have

0 = dF il ∧ dwi + F ilτki ∧ dwk + dFlα ∧ dzα − dFlα ∧ φtydzα − Flαd(φtydzα).

Comparing the dz ∧ dw-component on both sides gives ∂zF il ∧ dwi + ∂wFlα ∧ dzα = 0, which implies, by

contracting with φt, that
φtydF il ∧ dwi + ∂wFlα ∧ φtydzα = 0.

Then by comparing the dz̄ ∧ dw-component, we have

¯∂F il ∧ ∂zwi + F ilτki ∧ dwk − ∂wFlα ∧ φtydzα = 0.

Together with the formula we just obtained, we arrive at

(
¯∂ + φty∂)F il(z, 0) + Fkl (z, 0)τik = 0.

The result now follows by setting f ji (z, t) := F
j
i(z, 0, t).

In summary, we have proved the following

Theorem 3.12. Given At ∈ Ω0,1

(End(E))and φt ∈ Ω0,1

(TX). If the induceddifferential operator ¯Dt : Ω0,q
(E) →

Ω0,q+1
(E) satisfies ¯D2

t = 0 and the Leibniz rule

¯Dt(α ⊗ s) = (
¯∂ + φty∂)α ⊗ s + (−1)|α|α ∧ ¯Dt(s),

then E admits a holomorphic structure over the complex manifold Xt, which we will denote by Et → Xt or just
Et.

The operator
¯Dt gives a cochain complex

(Ω0,•

(E), ¯Dt).

It is then natural to compare the cohomologies H•(Xt , Et) and H•(Ω0,•

(E), ¯Dt). But ¯Dt captures only the holo-
morphicity of the pair (Xt , Et), so we would not expect H•(Ω0,•

(E), ¯Dt) to be something new.
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Proposition 3.13. For any t ∈ ∆, we have the isomorphism

Hq(Xt , Et) ∼= Hq(Ω0,•

(E), ¯Dt)

for any q ≥ 0.

Proof. Wefirst prove the case when E = OX and q = 0. Let Pt : Ω0,1

X → Ω0,1

Xt be the restriction of the projection

Ω1

X → Ω0,1

Xt . Since Pt is an isomorphism for |t| small, it suffices to prove that

¯∂tPt = Pt(¯∂ + φty∂)

at every point x ∈ X. So let us fix x ∈ X and let {zj}be local complex coordinates around x. Let v̄j := ∂
∂z̄j +φ

k
j
∂
∂zk

and ϵ̄j be its dual vector. Then Maurer–Cartan equation of φt implies

[v̄j , v̄k] = 0.

By the Newlander-Nirenberg theorem, we have complex coordinates {ζ j} on Xt such that

∂
∂¯ζ j

= v̄j and d¯ζ j = ϵ̄j

at the point x. Then at x,
Pt(¯∂ + φy∂)f =

(︂
∂f
∂z̄j + φ

k
j
∂f
∂zk

)︂
Pt(dz̄j).

We need to show that Pt(dz̄j) = ϵ̄j. We write

dz̄j = cjk ϵ̄
j
+ djkϵ

k
.

Then

cjk = dz̄
j
(v̄k) = dz̄j

(︂
∂
∂z̄j + φ

k
j
∂
∂zk

)︂
= δik .

Hence P(dz̄j) = ϵ̄j. Therefore,
Pt(¯∂ + φy∂)f = (v̄j f )ϵ̄j =

∂f
∂¯ζ j

d¯ζ j = ¯∂tPt f

at x. Since x is arbitrary, the case q = 0 is done.

For q > 0. By abusing the notation, we still denote the induced projection Ω0,q
X → Ω0,q

Xt by Pt. Let α =

αJdz̄J . Then at the point x,

Pt(¯∂ + φty∂)α = Pt(¯∂ + φty∂)(αJ) ∧ Pt(dz̄J) = ¯∂tPαJ ∧ ϵ̄J .

We need to show that
¯∂t(ϵ̄j) = 0 for all j. Since {ϵ̄j} is a local frame of (T0,1Xt )

*

, dϵ̄j ∈ Ω1,1

Xt ⊕ Ω0,2

Xt . Hence, in

order to prove
¯∂t(ϵ̄j) = 0, it suffices to show that dϵ̄j(v̄k , v̄l) = 0 for all k, l. This follows from

dϵ̄j(v̄k , v̄l) = v̄k ϵ̄j(v̄l) − v̄l ϵ̄j(v̄k) − ϵ̄j([v̄k , v̄l]) = 0.

This completes the case E = OX and q ≥ 0.
For a general holomorphic vector bundle E, ¯Dt is locally given by

¯Dt(αj ⊗ ej) = (
¯∂ + φty∂)αj ⊗ ej ,

where {ej} are local holomorphic frame of Et over Xt. In this case, Pt is extended by

αj ⊗ ej ↦→ Pt(αj)⊗ ej .

The required relation follows immediately from the E = OX case.
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3.3 DGLA and the Maurer–Cartan equation

We are now ready to derive the Maurer–Cartan equation governing the deformations of pairs. Given At ∈
Ω0,1

(End(E)), φt ∈ Ω0,1

(TX) such that the induced differential operator ¯Dt satisfies ¯D2

t = 0, we have

(
¯∂E + φty∇ + At)2 = ¯D2

t = 0.

Let us expand the leӔ hand side:

(
¯∂E + φty∇ + At)2 =¯∂E(φty∇) + φty∇¯∂E + φty∇(φty∇)

+
¯∂EAt + At ¯∂E + φty∇At + At(φty∇) + At ∧ At

=
¯∂E(φty∇) + φty∇¯∂E + φty∇(φty∇)

+
¯∂QAt + φty∇QAt + At ∧ At .

Applying Lemma 3.6 to the term
¯∂E(φty∇), we get

(
¯∂E + φty∇ + At)2 =¯∂TXφty∇ + φty(¯∂E∇ +∇¯∂E) + φty∇(φty∇)

+
¯∂QAt + φty∇QAt + At ∧ At .

Since∇ is the Chern connection, we have F∇ =
¯∂E∇ +∇¯∂E, and so

(
¯∂E + φty∇ + At)2 = (

¯∂TXφty∇ + φty∇(φty∇)) +
¯∂QAt + φtyF∇ + φty∇QAt + At ∧ At .

Note that the curvature F∇ is given by

F∇(φ, ψ) = φy∇(ψy∇) − (−1)

|φ||ψ|ψy∇(φy∇) + [φ, ψ]y∇

for φ, ψ ∈ Ω0,*

(TCX). Hence
2φty∇(φty∇) = F∇(φt , φt) + [φt , φt]y∇.

However, φt ∈ Ω0,1

(TX) and F∇ is of type-(1, 1), we must have F∇(φt , φt) = 0. Therefore,

φty∇(φty∇) =

1

2

[φt , φt]y∇.

As a whole we obtain

(
¯∂E + φty∇ + At)2 =

(︂
¯∂TXφt +

1

2

[φt , φt]
)︂
y∇ +

¯∂QAt + φtyF∇ + φty∇QAt +
1

2

[At , At].

But since Xt is integrable, φt satisfies the Maurer–Cartan equation (1), and so

(
¯∂E + φty∇ + At)2 = ¯∂QAt + φtyF∇ + φty∇QAt +

1

2

[At , At].

Hence we conclude that
¯D2

t = 0 is equivalent to the following two equations⎧⎪⎨⎪⎩
¯∂QAt + φtyF∇ + φty∇QAt +

1

2

[At , At] = 0,

¯∂TXφt +
1

2

[φt , φt] = 0.

(2)

Recall that A(E) = Q ⊕ TX as smooth vector bundle. Define a bracket [−, −] : Ω0,p
(A(E)) × Ω0,q

(A(E)) →
Ω0,p+q

(A(E)) by
[(A, φ), (B, ψ)] := (φy∇QB − (−1)pqψy∇QA + [A, B], [φ, ψ]).

The following proposition can be proven by straightforward, but tedious, computations which we omit:

Proposition 3.14. The bracket [−, −] : Ω0,p
(A(E)) × Ω0,q

(A(E)) → Ω0,p+q
(A(E)) defined by

[(A, φ), (B, ψ)] := (φy∇QB − (−1)pqψy∇QA + [A, B], [φ, ψ])

satisfies
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(1) [(A, φ), (B, ψ)] = −(−1)pq[(B, ψ), (A, φ)],
(2) [(A, φ), [(B, ψ), (C, τ)]] = [[(A, φ), (B, ψ)], (C, τ)] + (−1)pq[(B, ψ), [(A, φ), (C, τ)]],

for (A, φ) ∈ Ω0,p
(A(E)), (B, ψ) ∈ Ω0,q

(A(E)) and (C, τ) ∈ Ω0,r
(A(E)).

We also recall the differential operator
¯∂A(E) defined in Section 2.

Again by direct computations, one can prove that the bracket [−, −] and the Dolbeault operator
¯∂A(E) are

compatible with each other:

Proposition 3.15. We have

¯∂A(E)[(A, φ), (B, ψ)] = [
¯∂A(E)(A, φ), (B, ψ)] + (−1)p[(A, φ), ¯∂A(E)(B, ψ)]

for (A, φ) ∈ Ω0,p
(A(E)) and (B, ψ) ∈ Ω0,•

(A(E)).

Propositions 3.14 and 3.15 together say that (Ω0,•

(A(E)), ¯∂A(E), [−, −]) defines a differential graded Lie algebra
(DGLA).

Remark 3.16. In the appendix, we will prove that there exists a natural isomorphism between the complex
(Ω0,•

(A(E)), ¯∂A(E)) and the one obtained using algebraicmethods [16, 21] intertwining our bracket [−, −]with the
algebraic one. This gives alternative proofs of Propositions 3.14 and 3.15, and shows that our DGLA is naturally
isomorphic to the one derived using algebraic methods. In particular, the isomorphism class of our DGLA is
independent of the choice of the hermitian metric we used to define the Chern connection∇.

Using the bracket [−, −] and the Dolbeault operator
¯∂A(E), we can now rewrite the two equations (2) as the

following Maurer–Cartan equation:

¯∂A(E)(At , φt) +
1

2

[(At , φt), (At , φt)] = 0,

which governs the deformation of pairs. We summarize our results by the following

Theorem 3.17. Given a holomorphic pair (X, E) and a smooth family of elements {(At , φt)}t∈∆ ⊂ Ω0,1

(A(E)).
Then (At , φt) defines a holomorphic pair (Xt , Et) (namely, an integrable complex structure Jt on X together with
a holomorphic bundle structure on E over (X, Jt)) if and only if the Maurer–Cartan equation

¯∂A(E)(At , φt) +
1

2

[(At , φt), (At , φt)] = 0 (3)

is satisfied.

4 First order deformations

The Maurer–Cartan equation (3) implies that a first order deformation (A
1
, φ

1
) (the linear term of the Taylor

series expansion of a family (At , φt)) is ¯∂A(E)-closed:

¯∂A(E)(A1, φ1
) = 0,

and hence defines a cohomology class in the Dolbeault cohomology group H0,1

¯∂A(E)
∼
= H1

(X, A(E)). To deter-
mine the space of first order deformations of a holomorphic pair (X, E), it remains to identify isomorphic

deformations.

Definition 4.1. Two deformations E → X, E′ → X′ of (X, E) are said to be isomorphic if there exists a biholo-
morphism F : X → X′ and a holomorphic bundle isomorphism Φ : E → E′ covering F such that F|X = idX and
Φ|E = idE.
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Proposition 4.2. Suppose E → X and E′ → X′ are isomorphic 1-real parameter family of deformations of
(X, E). If we denote by (At , φt) and (A′

t , φ′
t) the elements that represent the families E → X and E′ → X′

respectively, then there exists (Θ
1
, v) ∈ Ω0

(A(E)) such that

(A′
t , φ′

t) = (At , φt) + t¯∂A(E)(−Θ1
, v) + R((At , φt), t(Θ1

, v)),

where the error R depends smoothly on t, A(t), φ(t), Θ
1
, v and first partial derivatives of Θ, v. Moreover, R is of

order s2 in the sense that
R(s(A, φ), s(Θ, v)) = s2R

1
((A, φ), (Θ, v), s),

for some map R
1
which depends smoothly (with respect to the Sobolev norm; see Section 6 for its precise defi-

nition) in s, (A, φ) ∈ Ω0,1

(A(E)) and (Θ, v) ∈ Ω0

(A(E)).

Proof. As before, let v ∈ Ω0

(TX) be the vector field which generates the 1-parameter family of diffeomor-

phisms Ft : X → X of the underlying smooth manifold X. Since

dFt(Graph(φt : T0,1X → T1,0X )) = Graph(φ′
t : T0,1X → T1,0X ),

we already have

φ′
t = φt + t¯∂TX v + R(φt , tv).

Hence it remains to show that

A′
t = At + t(¯∂Q(−Θ1

) − vyF∇) + R((At , φt), t(Θ1
, v)),

for some Θ
1
∈ Ω0

(Q).
We define an endomorphism of E as follows: Fix p ∈ X and the fiber Ep of E. Let P𝛾p(t) : Ep → EFt(p) be

the parallel transport along t ↦−→ 𝛾p(t) := Ft(p). Define Θt := P−1𝛾p(t)Φt : Ep → Ep. Then Θt defines a bundle
endomorphism of E. Let us write

Θt = Θ0
+ tΘ

1
+ O(t2),

A′
t = A′

0
+ tA′

1
+ O(t2),

Since Φ
0
= idE, we have Θ0

= idE and A′
0
= 0. We need to compute A′

1
.

Now let et be a local holomorphic section of Et ⊂ E. Since Φt is holomorphic, Φt(et) is a holomorphic

section of E′t ⊂ E′
, so that

¯D′
tΦt(et) = 0, i.e.

¯∂EΦt(et) = −φ′
(t)y∇Φt(et) − A′

tΦt(et).

We want to compute the first derivatives of both sides of this equation with respective to t at t = 0.

First note that Φt = P𝛾(t)Θt, so we have

∂
∂t Φt(et)|t=0 = −vy∇e + Θ1

(e) + ∂
∂t et|t=0,

where e = e
0
. Hence

∂
∂t

¯∂EΦt(et)|t=0 = ¯∂E
(︂
∂
∂t Φt(et)|t=0

)︂
= −

¯∂E(vy∇e) + ¯∂E(Θ1
(e)) + ¯∂E

(︂
∂
∂t et|t=0

)︂
.

For the term, −φ′
ty∇Φt(et), we have

∂
∂t (−φ

′
ty∇Φt(et))|t=0 = −φ′

1
y∇e − ¯∂TX vy∇e

= −φ′
1
y∇e − ¯∂E(vy∇e) − vy¯∂E∇e.
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Since e = e
0
is holomorphic with respective to E|π−1(0), we have

¯∂E∇e = F∇(e).

Moreover, since et is holomorphic with respective to Et, we have ¯Dtet = 0, that is,

¯∂Eet = −φty∇et − Atet .

Differentiate with respective to t and set t = 0, we obtain

−φ
1
y∇e = ¯∂E

(︂
∂
∂t e(t)|t=0

)︂
+ A

1
e.

Hence

∂
∂t (−φ

′
ty∇Φt(et))|t=0 = ¯∂E

(︂
∂
∂t et|t=0

)︂
−
¯∂E(vy∇e) − vyF∇e + A1e.

For the term −A′
tΦt(et), we have

∂
∂t (−A

′
tΦt(et))|t=0 = −A′

1
e.

As a whole we obtain the formula

¯∂E(Θ1
(e)) = −vyF∇(e) + (A1 − A′

1
)(e).

Since e is holomorphic with respective to E|π−1(0), ¯∂E(Θ1
(e)) = (

¯∂QΘ1
)(e), so that

A′
1
= A

1
+
¯∂Q(−Θ1

) − vyF∇.

Therefore we have

∂
∂t (A

′
t − At)|t=0 = A′

1
− A

1
=
¯∂Q(−Θ1

) − vyF∇,

or in other words,

A′
t = At + t(¯∂Q(−Θ1

) − vyF∇) + O(t2).
Since A′

t is completely determined by (At , φt) and t(Θ1
, v), we have

A′
t = At + t(¯∂Q(−Θ1

) − vyF∇) + R((At , φt), t(Θ1
, v)),

where R is of order t2 and depends smoothly on t, At , φt , Θ1
, v. Moreover, since the equation

¯∂EΦt(et) = −φ′
ty∇Φt(et) − A′

tΦt(et)

depends smoothly on first order partial derivatives ofΘ
1
and v, we see that the error R also depends smoothly

on first order partial derivatives of Θ
1
and v.

Finally, R satisfies
R(s(A, φ), st(Θ, v)) = s2R

1
((A, φ), (Θ

1
, v), s),

for somemap R
1
which depends smoothly in s, (A, φ) ∈ Ω0,1

(A(E)) and (Θ, v) ∈ Ω0

(A(E)). This follows from
the fact that

R((A, φ), (Θ, v)) → 0 as (Θ, v) → 0, and

R((A, φ), (Θ, v)) → R((Θ, v)) as (A, φ) → 0,

with R(s(Θ, v)) = s2R((Θ, v)).

Corollary 4.3. If E → X and E′ → X′ are isomorphic deformations of (X, E), then the first order terms (A
1
, φ

1
)

and (A′
1
, φ′

1
) of the corresponding families (At , φt) and (A′

t , φ′
t) respectively differ by an ¯∂A(E)-exact form.

Proof. We have A′
1
− A

1
=
¯∂Q(−Θ1

) − vyF∇ and φ′
1
− φ

1
=
¯∂TX v, whence

(A′
1
, φ′

1
) − (A

1
, φ

1
) =

¯∂A(E)(−Θ1
, v).

We conclude that the space of first order deformations of a holomorphic pair (X, E) is precisely given by the
Dolbeault cohomology group H0,1

¯∂A(E)
∼
= H1

(X, A(E))



A differential-geometric approach to deformations of pairs | 31

5 Obstructions and Kuranishi family

Now given a first order deformation [(A
1
, φ

1
)] ∈ H0,1

¯∂A(E)
∼
= H1

(X, A(E)), it is standard in deformation theory to

ask whether one can find a family (At , φt) integrating (A1, φ1
) to give an actual family of deformations. To

study this problem, we use a method due to Kuranishi [14].

We need to review several operators commonly used in Hodge theory. We first choose a hermitian metric

g on X and h on A(E), so that we can define a hermitian product (·, ·) on Ω0,•

(A(E)). Define the formal adjoint

of
¯∂A(E) with respective to (·, ·) by (︀

¯∂A(E)α, β
)︀
=

(︁
α, ¯∂*A(E)β

)︁
.

Then the Laplacian is defined by
∆A(E) := ¯∂A(E)¯∂*A(E) + ¯∂*A(E)¯∂A(E).

This is an elliptic self-adjoint operator and thus has a finite dimensional kernel Hp
(X, A(E)), consisting of

harmonic forms. We have the standard isomorphism from Hodge theory:

Hp(X, A(E)) ∼= H0,p
¯∂A(E)

∼
= Hp

(X, A(E)).

Take a completion of Ω0,•

(A(E)) with respective to (·, ·) to get a Hilbert space L*, and let H : L* →
H*(X, A(E)) be the harmonic projection. The Green’s operator G : L* → L* is defined by

I = H + ∆A(E)G = H + G∆A(E).

It commutes with
¯∂A(E) and ¯∂*A(E).

Now let η
1
, . . . , ηm ∈ H1

(X, A(E)) be a basis and ϵ
1
(t) :=

∑︀m
j=1 tjηj ∈ H1

(X, A(E)). Consider the equation

ϵ(t) = ϵ
1
(t) − 1

2

¯∂*A(E)G[ϵ(t), ϵ(t)].

We denote the Hölder norm by ‖ · ‖k,α. The following estimates are obvious:

‖¯∂*A(E)ϵ‖k,α ≤C1‖ϵ‖k+1,α
‖[ϵ, δ]‖k,α ≤C2‖ϵ‖k+1,α‖δ‖k+1,α .

In [2], Douglis and Nirenberg proved the following nontrivial a priori estimate:

‖ϵ‖k,α ≤ C3(‖∆A(E)ϵ‖k−2,α + ‖ϵ‖
0,α).

Applying these and following the proof of [11, Chapter 4, Proposition 2.3], one can deduce an estimate for the

Green’s operator G:
‖Gϵ‖k,α ≤ C4‖ϵ‖k−2,α ,

where all Ci’s are positive constants which depend only on k and α.
Then by the same argument as in [11, Chapter 4, Proposition 2.4], or alternatively using an implicit func-

tion theorem for Banach spaces [14], we obtain a unique solution ϵ(t) which satisfies the equation

ϵ(t) = ϵ
1
(t) − 1

2

¯∂*A(E)G[ϵ(t), ϵ(t)],

and is analytic in the variable t. Note that the solution ϵ(t) is always smooth. Indeed, by applying the Lapla-

cian to the above equation, we get

∆A(E)ϵ(t) +
1

2

¯∂*A(E)[ϵ(t), ϵ(t)] = 0.

Also, the solution ϵ(t) is holomorphic in t, so we have∑︁
j

∂2ϵ(t)
∂tj∂¯tj

= 0.
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Now since the operator

∆A(E) +
∑︁
j

∂2
∂tj∂¯tj

is elliptic, we see that ϵ(t) is smooth by elliptic regularity.

Following Kuranishi [14] (see also [11, Chapter 4]), we have the following

Proposition 5.1. The solution ϵ(t) that satisfies

ϵ(t) = ϵ
1
(t) − 1

2

¯∂*A(E)G[ϵ(t), ϵ(t)]

solves the Maurer–Cartan equation if and only if H[ϵ(t), ϵ(t)] = 0, where H is the harmonic projection.

Proof. Suppose the Maurer–Cartan equation holds. Then

H[ϵ(t), ϵ(t)] = 2H¯∂A(E)ϵ(t) = 0.

Conversely, suppose that H[ϵ(t), ϵ(t)] = 0. We must show that

δ(t) := ¯∂A(E)ϵ(t) +
1

2

[ϵ(t), ϵ(t)] = 0.

Recall that ϵ(t) is a solution to
ϵ(t) = ϵ

1
(t) − 1

2

¯∂*A(E)G[ϵ(t), ϵ(t)]

and ϵ
1
(t) is ¯∂A(E)-closed. By applying ¯∂A(E) to this equation, we get

¯∂A(E)ϵ(t) = −
1

2

¯∂A(E)¯∂*A(E)G[ϵ(t), ϵ(t)].

Hence

2δ(t) = ¯∂A(E)¯∂*A(E)G[ϵ(t), ϵ(t)] − [ϵ(t), ϵ(t)].

Using the Hodge decomposition on forms, we can write

[ϵ(t), ϵ(t)] = H[ϵ(t), ϵ(t)] + ∆A(E)G[ϵ(t), ϵ(t)] = ∆A(E)G[ϵ(t), ϵ(t)].

Therefore, we have

2δ(t) = (∆A(E)G − ¯∂A(E)¯∂*A(E)G)[ϵ(t), ϵ(t)] = ¯∂*A(E)¯∂A(E)G[ϵ(t), ϵ(t)] = 2
¯∂*A(E)G[¯∂A(E)ϵ(t), ϵ(t)],

and hence

δ(t) = ¯∂*A(E)G[¯∂A(E)ϵ(t), ϵ(t)] = ¯∂*A(E)G[δ(t) −
1

2

[ϵ(t), ϵ(t)], ϵ(t)] = ¯∂*A(E)G[δ(t), ϵ(t)],

where we have used the Jacobi identity in the last equality. Using the estimate

‖[ξ , η]‖k,α ≤ Ck,α‖ξ‖k+1,α‖η‖k+1,α ,

we get

‖δ(t)‖k,α ≤ Ck,α‖δ(t)‖k,α‖ϵ(t)‖k,α .

By choosing |t| to be small enough so that Ck,α‖ϵ(t)‖k,α < 1, we must have δ(t) = 0 for all |t| small enough.

This finishes the proof.

In the case when H[ϵ(t), ϵ(t)] vanishes identically (which always holds if H2

(X, A(E)) = 0), we have the fol-

lowing

Corollary 5.2. If H[ϵ(t), ϵ(t)] = 0 for all t, then we have a complex analytic family E → X.
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Proof. If H[ϵ(t), ϵ(t)] = 0 for all t, then ϵ(t) = (At , φt) satisfies the Maurer–Cartan equation and so (Xt , Et)
is holomorphic for each t. In particular, we obtain a deformation X of X. Let E := ∆ × E. A smooth section

σ : X → E of E on X can be written as

σ : (t, x) ↦−→ (t, s(x, t)),

for some smooth map s : X → E. We define a Dolbeault operator
¯∂E : Ω0

X(E) → Ω0,1

X
(E) on E by

¯∂Eσ(t, x) = (t, ¯∂Et s(t, x)).

Note that
¯∂E is well-defined for, if {ek(t, x)} are local holomorphic frame of Et → Xt, then we can write

¯∂Eσ(t, x) = (t, ¯∂E(sk(t, x)ek(t, x)) = ¯∂tsk(t, x)⊗ ek(t, x)),

which is a smooth section of Ω0,1

X
(E). Clearly, ¯∂2E = 0 and hence E is a holomorphic vector bundle overX.

In general, the conditionH2

(X, A(E)) = 0may not be satisfied. But we can define the (singular) analytic space

S := {t ∈ ∆ : H[ϵ(t), ϵ(t)] = 0}

and form a family E → X over S, which is called the Kuranishi family of (X, E). In particular, we see that

the obstruction space is precisely given by the Dolbeault cohomology group H0,2

¯∂A(E)
∼
= H2

(X, A(E)), and the

obstructions to deformations of a holomorphic pair (X, E) is captured by the Kuranishi map

Ob
(X,E) : U ⊂ H1

(X, A(E)) → H2

(X, A(E)),
m∑︁
i=1
tjηj ↦→ H[ϵ(t), ϵ(t)],

where U is a small open subset around the origin 0 ∈ H1

(X, A(E)) whose diameter is less than twice of the

radius of convergence of ϵ(t).

6 A proof of completeness

The goal of this section is to give a proof of the local completeness of a Kuranishi family for the deformation

of the pair (X, E). Existence of a locally complete (or versal) family for deformations of pairs was first proved

by Siu-Trautmann [22]. Here we give another proof using Kuranishi’s method.

Definition 6.1. A family E → X over an analytic space S is said to be locally complete (or versal) if for any
family E′ → X′ over a sufficiently small ball ∆, there exists an analytic map f : ∆ → S such that the family
E′ → X′ is the pull-back of E → X via f .

Recall that for given ϵ
1
(t) ∈ H1

(X, A(E)), we have existence of solutions ϵ(t) to

ϵ(t) = ϵ
1
(t) − 1

2

¯∂*A(E)G[ϵ(t), ϵ(t)]

and ϵ(t) satisfies theMaurer–Cartan equation if and only ifH[ϵ(t), ϵ(t)] = 0.We then obtain an analytic family

E → X over

S := {t ∈ ∆ : H[ϵ(t), ϵ(t)] = 0}.

The main theorem is as follows:

Theorem 6.2. The Kuranishi family E → X over S is locally complete.

Before going into the details of the proof, we first introduce the Sobolev norm: One can endow A(E) a hermi-

tian metric H, induced from that of E and X, and define the inner product

(α, β)k :=
∑︁
|I|≤k

∫︁
X

H(DIα, DIβ),
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α, β ∈ Ω0,*

(A(E)). The Sobolev norm is defined by

|α| := (α, α)
1

2

.

One has the estimate

|[α, β]|k ≤ Ck|α|k+1|β|k+1,

for some constant Ck > 0.
We take a completion of Ω0,•

(A(E)) with respective to (·, ·)k to get a Hilbert space L*k. The harmonic pro-

jection H : L•k → H•(X, A(E)) and the Green’s operator G : L•k → L•k+2 satisfy the estimates

|Hα|k ≤ Ck|α|k ,

|¯∂*A(E)Gα|k ≤ Ck|α|k−1.

The following lemma will be useful in the proof of the completeness theorem.

Lemma 6.3. For fixed ϵ
1
(t) ∈ H1

(X, A(E)), t ∈ S, the equation

ϵ(t) = ϵ
1
(t) − 1

2

¯∂*A(E)G[ϵ(t), ϵ(t)]

has only one small solution.

Proof. Suppose ϵ is another solution. Let δ := ϵ − ϵ(t). Then

δ = −1
2

¯∂*A(E)G([ϵ, ϵ] − [ϵ(t), ϵ(t)])

= −

1

2

¯∂*A(E)G([δ, ϵ(t)] + [ϵ(t), δ] + [δ, δ])

= −

1

2

¯∂*A(E)G(2[δ, ϵ(t)] + [δ, δ]).

Hence

|δ|k ≤ Ck(|δ|k|ϵ(t)|k + |δ|2k) ≤ Ck|δ|k(|ϵ(t)|k + |δ|k).

For |ϵ(t)|k and |ϵ|k small, we can only have |δ|k = 0.

We are now ready to prove the local completeness theorem.

Proof of Theorem 6.2. Let E′ → X′
be a deformation of (X, E). Let ϵ′, be the element representing this defor-

mation. We first prove that if
¯∂*A(E)ϵ

′
= 0, then there exists t ∈ S such that ϵ′ = ϵ(t).

Note that ϵ′ satisfies the Maurer–Cartan equation:

¯∂A(E)ϵ′ +
1

2

[ϵ′, ϵ′] = 0.

Applying
¯∂*A(E), we get

¯∂*A(E)¯∂A(E)ϵ
′
+

1

2

¯∂*A(E)[ϵ
′
, ϵ′] = 0.

Since
¯∂*A(E)ϵ

′
= 0, we have

∆A(E)ϵ′ +
1

2

¯∂*A(E)[ϵ
′
, ϵ′] = 0.

Then using I = H + G∆A(E), we get
ϵ′ = Hϵ′ − 1

2

¯∂*A(E)G[ϵ
′
, ϵ′].

Note that Hϵ′ ∈ H1

(X, A(E)) and by the estimate |Hϵ′|k ≤ Ck|ϵ′|, we see that |Hϵ′|k is small if |ϵ′|k is small.

Hence Hϵ′ = ϵ
1
(t) for some t ∈ S. Therefore, if the ball ∆ is small enough, ϵ′ is a solution to

ϵ′ = ϵ
1
(t) − 1

2

¯∂*A(E)G[ϵ
′
, ϵ′].
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Therefore, ϵ′ = ϵ(t) for some t ∈ S by Lemma 6.3.

Now we prove that for any given small deformation E′ → X′
, one can find an isomorphic deformation

E′′ → X′′
such that the element ϵ′′ which represents the family E′′ → X′′

is
¯∂*A(E)-closed. This will prove the

local completeness. Indeed, we will prove the following: Given a deformation ϵ′, there exists η ∈ Im(¯∂*A(E)) ⊂
Ω0

(A(E)) such that the element ϵ′′, which represents the deformation E′′ → X′′
, is

¯∂*A(E)-closed.
Let η = (Θ, v) ∈ Ω0

(A(E)), then the elements ϵ′, ϵ′′, which represent the deformations E′ → X′
and

E′′ → X′′
respectively, satisfy

ϵ′′ = ϵ′ + ¯∂A(E)η + R(ϵ′, η),
where the error term R satisfies R(sϵ′, sη) = s2R

1
(ϵ′, η, s) as in Proposition 4.2. Hence ¯∂*A(E)ϵ

′′
= 0 if and only

if

¯∂*A(E)ϵ
′
+
¯∂*A(E)¯∂A(E)η + ¯∂*A(E)R(ϵ

′
, η) = 0.

If η ∈ Im(¯∂*A(E)), then
∆A(E)(η) + ¯∂*A(E)R(ϵ

′
(s), η) + ¯∂*A(E)ϵ

′
= 0.

Applying G, we get
η + ¯∂*A(E)GR(ϵ

′
, η) + ¯∂*A(E)Gϵ

′
= 0.

Let U
1
⊂ L1k and V1 ⊂ L0k be neighborhoods around 0 such that R(ϵ′, η) is defined. Define F : U

1
× V

1
→ L0k

by

F(ϵ′, η) := η + ¯∂*A(E)GR(ϵ
′
, η) + ¯∂*A(E)Gϵ

′
.

By the order condition on the error term R, the derivative of F with respective to η at (0, 0) is the identity map.

Hence by the implicit function theorem, there is a C∞ function g such that F(ϵ′, η) = 0 if and only if η = g(ϵ′).
By the error condition again, the (second order) operator |¯∂*A(E)R(ϵ

′
, −)|k is small if |ϵ′|k is small. Hence

∆A(E) + ¯∂*A(E)R(ϵ
′
, −) +

¯∂*A(E)ϵ
′

is still a quasi-linear elliptic operator. By elliptic regularity, η is smooth. This completes our proof.

7 Unobstructed deformations

In this section, we investigate various circumstances under which deformations of holomorphic pairs are

unobstructed.

To begin with, note that we have an exact sequence of holomorphic vector bundles

0 −→ End(E) −→ A(E) −→ TX −→ 0

by the construction of A(E) (which shows that A(E) is an extension of Q = End(E) by TX). This induces a long
exact sequence in cohomology groups:

· · · −→ H1

(X, Q) −→ H1

(X, A(E)) −→ H1

(X, TX) −→
−→ H2

(X, Q) −→ H2

(X, A(E)) −→ H2

(X, TX) −→ · · · ,

and the first order term (A
1
, φ

1
) defines a class [(A

1
, φ

1
)] ∈ H1

(X, A(E)).
The following proposition, which first appeared in [7, Appendix] without proof, describes the relations

between the deformations of a pair (X, E) and that of X and E.

Proposition 7.1. Denote the Kuranishi obstructionmaps of the deformation theories of X, E and (X, E) by ObX ,
ObE and Ob(X,E) respectively. Then, wherever the obstruction maps are defined, we have the following commu-
tative diagram:

· · ·
// H1

(X, Q)

ObE
��

ι* // H1

(X, A(E))

Ob
(X,E)
��

π* // H1

(X, TX)

ObX
��

δ //
· · ·

· · ·
// H2

(X, Q) ι* // H2

(X, A(E)) π* // H2

(X, TX)
δ //

· · ·



36 | Kwokwai Chan and Yat-Hin Suen

Here, the connecting homomorphism δ is given by contracting with the Atiyah class:

δ(φ) = φy[F∇].

Proof. By definition,
ι*([A]) = [(A, 0)], π*([(A, φ)]) = [φ].

The commutative diagram follows directly from the definitions of the maps ObX,ObE and Ob(X,E).

Remark 7.2. We remark that since tr[A, A] = 0 for any A ∈ Ω0,1

(Q), the obstruction of deforming E (with X
fixed) actually lies in H2

(X, End
0
(E)), where End

0
(E) ⊂ End(E) is the trace-free part of End(E).

Remark 7.3. For any [(A, φ)] ∈ H1

(X, A(E)) such that Ob
(X,E)(A, φ) = 0, we have

0 = ObX ∘ π*[(A, φ)] = ObX([φ]).

In this case, the map (A, φ) ↦→ φ induces a map of Kuranishi slices, i.e. every deformation of the pair (X, E)
induces a deformation of the manifold X.

An immediate consequence of this proposition is the following slight generalization of a result in [20]:

Proposition 7.4. Suppose that ObX ∘ π* = 0 and the connecting homomorphism δ : H1

(X, TX) → H2

(X, Q) is
surjective, then deformations of the pair (X, E) are unobstructed.

Proof. Surjectivity of δ implies that the map ι* : H2

(X, Q) → H2

(X, A(E)) is a zero map, and hence the map

π* : H2

(X, A(E)) → H2

(X, TX) is injective. But π* ∘ Ob(X,E) = ObX ∘ π* = 0, so we have Ob
(X,E) = 0.

In the case when E = L is a line bundle, we recover the following

Corollary 7.5 ([20], Lemma 2.4). Let X be a compact complex manifold with unobstructed deformations and L
be a holomorphic line bundle over X such that the map

∪c
1
(L) : H1

(X, TX) → H2

(X,OX)

is surjective. Then deformations of the pair (X, L) are unobstructed.

For example, if X is an n-dimensional compact Kähler manifold with trivial canonical line bundle, then X
admits unobstructed deformations. If we further assume that H0,2

(X) = 0 (e.g. when the holonomy of X is

precisely SU(n)), then deformations of (X, L) for any line bundle L are unobstructed.

Definition 7.6. A holomorphic vector bundle E over a compact complex manifold X is said to be good if
H2

(X, Q
0
) = 0, where Q

0
is the trace-free part of Q = End(E).

Proposition 7.7. Let X be a compact complex surface with trivial canonical line bundle (e.g. a K3-surface), and
let E be a good bundle over X with c

1
(E) ≠ 0. Then deformations of the pair (X, E) are unobstructed.

Proof. By the theorem of Tian and Todorov [23, 24], we have ObX = 0. Hence the condition ObX ∘ π* = 0 is

automatic.

On the other hand, note that Q* = (E* ⊗ E)* = E* ⊗ E = Q and similarly Q*
0
= Q

0
. By Serre duality and

the fact that KX ∼
= OX, we have H0

(X, Q
0
)
∼
= (H2

(X, Q
0
))

*

= 0 since E is good. This implies that H0

(X, Q) ∼=
H0

(X,OX) ∼= C. Then applying Serre duality again gives

H2

(X, Q) ∼= (H0

(X, Q* ⊗ KX))* ∼= (H0

(X, Q))* ∼= C.

In this case, the connecting homomorphism δ : H1

(X, TX) ∼= H1,1

(X) → H2

(X, Q) ∼= C is simply given by

δ(φ) =
∫︁
X

φ ∪ [trF∇] = −2πi
∫︁
X

φ ∪ c
1
(E).
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When c
1
(E) ≠ 0, δ is a nonzero map and hence surjective. Proposition 7.4 then says that any deformation of

(X, E) is unobstructed.

A Comparison with the algebraic approach

The aim of this appendix is to give an explicit comparison between the analytic approach we adopt here and

the classical algebraic approach (see the book [21] for the deformation theory of (X, L) where L is a holomor-

phic line bundle on X, and the thesis [16] for the general case).
We start with a definition

Definition A.1. A differential operator of order 1 on a vector bundle E is a linear map P : Ω0

(E) → Ω0

(E) such
that locally,

P = (gij) +
∑︁
k
hkij

∂
∂xk

,

with (gij) be a matrix with entries in OX(Uα) and hkij ∈ OX(Uα).
A differential operator of order 1 is said to be with scalar principle symbol if hkij = hk · I.

In the algebraic approach, the role of the Atiyah extension A(E) is replaced by the sheaf D1

(E) of scalar dif-
ferential operators of order less than 1 on E, namely, we have an exact sequence

0 −→ End(E) −→ D1

(E) −→ TX −→ 0,

where the surjective map σ : D1

(E) → TX is locally defined by the symbol

σ(P) =
∑︁
k
hk ∂
∂xk

.

There is an obvious identification of D1

(E) with A(E) as smooth vector bundles, but we will see that in fact

D1

(E) can be given a holomorphic structure so that D1

(E) and A(E) are isomorphic as holomorphic vector

bundles.

First of all, locally on an open set Uα, we can write

P|Uα = gα + dα .

Let eα be local sections of E, {fαβ} be holomorphic transition functions of E and Pα := P|Uα (eα). To get a global
differential operator, we must have

fαβPβ = Pα fαβ .

Hence

gβ = fβαgα fαβ + fβα(dα fβα), dα = dβ .

Set

τα := gα − dαy(¯h−1α ∂¯hα),

where hα is the Hermitian metric on E|Uα . Define a map

Φ : gα + dα ↦−→ (τα , dα).

Straightforward computations give the identities

fαβτβ = τα fαβ , ¯∂A(E)(τα , dα) = 0.

It then follows that Φ defines an isomorphism between D1

(E) and A(E). So we can give D1

(E) a holomorphic

structure by pulling back that on A(E) via Φ. Hence we obtain
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Proposition A.2. D1

(E) carries a natural holomorphic structure so that it is isomorphic to the Atiyah extension
A(E). In particular, Hp(X, D1

(E)) ∼= Hp(X, A(E)) for any p.

Together with the Lie bracket [16]

[ω ⊗ P, η ⊗ Q] := ω ∧ η ⊗ [P, Q] + ω ∧ Lσ(P)η ⊗ Q − (−1)|ω||η|η ∧ Lσ(Q)ω ⊗ P,

the triple (Ω0,*

(D1

(E)), ¯∂, [−, −]) forms a DGLA. Note that the Lie derivative acts by

LXω = d(iXω) + iXdω = iX∂ω,

for any ω ∈ Ω0,*

(X) and X ∈ Ω0

(TX).

Theorem A.3. The isomorphism Φ : D1

(E) → A(E)

Φ : gα + dα ↦−→ gα − ¯h−1α dα ¯hα

intertwines with the brackets [−, −] and [−, −]h, i.e.

Φ[φ ⊗ P, ψ ⊗ Q] = [φ ⊗ Φ(P), ψ ⊗ Φ(Q)]h .

Proof. We first prove that

Φ[P, Q] = [Φ(P),Φ(Q)]h .

Write P = g + d and Q = g′ + d′ locally in a coordinate neighborhood U ⊂ X. Then

[P, Q] = [g, g′] + dg′ − d′g + [d, d′]

and so

Φ[P, Q] = ([g, g′] + dg′ − d′g − ¯h−1[d, d′]¯h, [d, d′]).

On the other hand,

[Φ(P),Φ(Q)]h = (∇Q
d (g

′
−
¯h−1d′¯h) −∇Q

d′ (g − ¯h
−1d¯h) + [g − ¯h−1d′¯h, g − ¯h−1d′¯h], [d, d′])

Now, we compute

∇Q
d (g

′
−
¯h−1d′¯h) −∇Q

d′ (g − ¯h
−1d¯h)

=d(g′ − ¯h−1d′¯h) + [¯h−1d¯h, g′ − ¯h−1d′¯h] − d′(g + ¯h−1d¯h) − [¯h−1d′¯h, g − ¯h−1d¯h]
=dg′ − d′g + [¯h−1d¯h, g′] − [¯h−1d′¯h, g] − d¯h−1d′¯h + d′¯h−1d¯h − 2[¯h−1d¯h, ¯h−1d′¯h].

and

[g − ¯h−1d¯h, g′ − ¯h−1d′¯h] = [g, g′] − [g, ¯h−1d′¯h] − [¯h−1d¯h, g′] + [¯h−1d¯h, ¯h−1d′¯h].

Therefore, their sum equals to

[g, g′] + dg′ − d′g − d¯h−1d′¯h + d′¯h−1d¯h − [¯h−1d¯h, ¯h−1d′¯h].

Finally,

[
¯h−1d¯h, ¯h−1d′¯h] = ¯h−1(d¯h)¯h−1(d′¯h) − ¯h−1(d′¯h)¯h−1(d¯h)

= −(d¯h−1)(d′¯h) + (d′¯h−1)(d¯h)
= −d(¯h−1d′¯h) + ¯h−1dd′¯h + d′(¯h−1d¯h) − ¯h−1d′d¯h
= −d(¯h−1d′¯h) + d′(¯h−1d¯h) + ¯h−1[d, d′]¯h.

Hence

∇Q
d (g

′
−
¯h−1d′¯h) −∇Q

d′ (g − ¯h
−1d¯h) + [g − ¯h−1d′¯h, g − ¯h−1d′¯h] = [g, g′] + dg′ − d′g − ¯h−1[d, d′]¯h,
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which is the required equality.

To prove the general case, we have, by linearity and the case that we have proved, the End(E)-part of
Φ[ω ⊗ P, η ⊗ Q] is equal to

ω ∧ η ⊗ [τ(P), τ(Q)]h − ω ∧ η ⊗ [τ(P), σ(Q)]h + ω ∧ η ⊗ [σ(P), τ(Q)]h
+ω ∧ Lσ(P)η ⊗ τ(Q) − (−1)|ω||η|η ∧ Lσ(Q)ω ⊗ τ(P),

where τ(P) := pr
End(E) ∘ Φ(P). On the other hand, the End(E)-part of [Φ(ω ⊗ P),Φ(η ⊗ Q)]h is equal to

((ω ⊗ σ(P))y∇Q
(η ⊗ τ(Q)) − (−1)|ω||η|(η ⊗ σ(Q))y∇Q

(ω ⊗ τ(P)) + ω ∧ η ⊗ [τ(P), τ(Q)]h .

The Leibniz rule for connections implies that

((ω ⊗ σ(P))y∇Q
(η ⊗ τ(Q)) = ω ∧ Lσ(P)η ⊗ τ(Q) + ω ∧ η ⊗∇Q

σ(P)τ(Q)

= ω ∧ Lσ(P)η ⊗ τ(Q) + ω ∧ η ⊗ [σ(P), τ(Q)].

Similarly, we have

((η ⊗ σ(Q))y∇Q
(ω ⊗ τ(P)) = η ∧ Lσ(Q)ω ⊗ τ(P) + (−1)|ω||τ|ω ∧ η ⊗ [σ(Q), τ(P)].

Putting these back into [Φ(ω ⊗ P),Φ(η ⊗ Q)]h, we get

Φ[ω ⊗ P, η ⊗ Q] = [Φ(ω ⊗ P),Φ(η ⊗ Q)]h .

This proves our theorem.

Remark A.4. This theorem gives a proof of the required identities in Propositions 3.14 and 3.15, and the fact
that the DGLA (Ω0,•

(A(E)), ¯∂A(E), [−, −]h) is independent of the choice of the hermitian metric h.
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