There are three major reservoirs for carbon in the Earth at the present time, the core, the mantle, and the continental crust. The carbon in the continental crust is mainly in carbonates (limestones, marbles, etc.). In this paper we consider the origin of the carbonates. In 1952, Harold Urey proposed that calcium silicates produced by erosion reacted with atmospheric CO 2 to produce carbonates, this is now known as the Urey reaction. In this paper we first address how the Urey reaction could have scavenged a significant mass of crustal carbon from the early atmosphere. At the present time the Urey reaction controls the CO 2 concentration in the atmosphere. The CO 2 enters the atmosphere by volcanism and is lost to the continental crust through the Urey reaction. We address this process in some detail. We then consider the decay of the Paleocene-Eocene thermal maximum (PETM). We quantify how the Urey reaction removes an injection of CO 2 into the atmosphere. A typical decay time is 100 000 yr but depends on the variable rate of the Urey reaction.
Inhalt
-
Open AccessCarbonation and the Urey reaction27. September 2019
-
27. September 2019
-
Erfordert eine Authentifizierung Nicht lizenziertPO4 adsorption on the calcite surface modulates calcite formation and crystal sizeLizenziert27. September 2019
-
Erfordert eine Authentifizierung Nicht lizenziertHigh-pressure Raman and Nd3+ luminescence spectroscopy of bastnäsite-(REE)CO3FLizenziert27. September 2019
-
Erfordert eine Authentifizierung Nicht lizenziertPrecipitates of α-cristobalite and silicate glass in UHP clinopyroxene from a Bohemian Massif eclogiteLizenziert27. September 2019
-
27. September 2019
-
Erfordert eine Authentifizierung Nicht lizenziertAnalyst and etching protocol effects on the reproducibility of apatite confined fission-track length measurement, and ambient-temperature annealing at decadal timescalesLizenziert27. September 2019
-
Erfordert eine Authentifizierung Nicht lizenziertIdentification of interstratified mica and pyrophyllite monolayers within chlorite using advanced scanning/transmission electron microscopyLizenziert27. September 2019
-
Erfordert eine Authentifizierung Nicht lizenziertInterdiffusion of major elements at 1 atmosphere between natural shoshonitic and rhyolitic meltsLizenziert27. September 2019
-
Erfordert eine Authentifizierung Nicht lizenziertFactors controlling the crystal morphology and chemistry of garnet in skarn deposits: A case study from the Cuihongshan polymetallic deposit, Lesser Xing’an Range, NE ChinaLizenziert27. September 2019
-
Erfordert eine Authentifizierung Nicht lizenziertGasparite-(La), La(AsO4), a new mineral from Mn ores of the Ushkatyn-III deposit, Central Kazakhstan, and metamorphic rocks of the Wanni glacier, SwitzerlandLizenziert27. September 2019
-
Erfordert eine Authentifizierung Nicht lizenziertCation ordering, valence states, and symmetry breaking in the crystal-chemically complex mineral chevkinite-(Ce): Recrystallization, transformation, and metamict states in chevkiniteLizenziert27. September 2019
-
Erfordert eine Authentifizierung Nicht lizenziertDiscrete Zr and REE mineralization of the Baerzhe rare-metal deposit, ChinaLizenziert27. September 2019
-
Erfordert eine Authentifizierung Nicht lizenziertOrigin of Monte Rosa whiteschist from in-situ tourmaline and quartz oxygen isotope analysis by SIMS using new tourmaline reference materialsLizenziert27. September 2019
-
Erfordert eine Authentifizierung Nicht lizenziertChenmingite, FeCr2O4 in the CaFe2O4-type structure, a shock-induced, high-pressure mineral in the Tissint martian meteoriteLizenziert27. September 2019
- Letter
-
Open AccessSingle-crystal elasticity of iron-bearing phase E and seismic detection of water in Earth’s upper mantle27. September 2019
-
Erfordert eine Authentifizierung Nicht lizenziertBook ReviewLizenziert27. September 2019
-
Erfordert eine Authentifizierung Nicht lizenziertBook ReviewLizenziert27. September 2019