Home Approaches of quantifying the entire load–depth curve in terms of hardness
Article
Licensed
Unlicensed Requires Authentication

Approaches of quantifying the entire load–depth curve in terms of hardness

  • B. Wolf EMAIL logo , A. Richter and M. Günther
Published/Copyright: January 25, 2022
Become an author with De Gruyter Brill

Abstract

Though in depth-sensing nanoindentation experiments the entire load – depth curve is recorded, traditional data analysis delivers two characteristic values only: hardness and indentation modulus, being only a small fraction of the information contained in the experimental data. Based on multicycling experiments, the contact depth is established as an analytical function of total depth, and this is used to assign each point of the loading – unloading cycle a corresponding contact pressure. This technique proves particularly useful to analyse load –depth curves exhibiting discontinuities. Furthermore, the potential of multicycling as a probe of unloading – reloading hysteresis is discussed.


Dr. Bodo Wolf c/o Prof. A. Richter University of Applied Sciences TFH Wildau Surface Technology Laboratories Bahnhofstr. 1, D-15745 Wildau, Germany Tel.: +49 3375 508 184 Fax: +49 3375 508 238

References

[1] D. Tabor: The hardness of metals, Clarendon Press, Oxford (1951).Search in Google Scholar

[2] B.W. Mott: Micro-indentation hardness testing, Butterworths, London (1956).Search in Google Scholar

[3] J.L. Hay, G.M. Pharr, in: ASM Metals Handbook, ASM International, Materials Park, Ohio (2000) 232.Search in Google Scholar

[4] M.F. Doerner, W.D. Nix: J. Mater. Res. 1 (1986) 601.10.1557/JMR.1986.0601Search in Google Scholar

[5] J.S. Field, M.V. Swain: J. Mater. Res. 8 (1993) 297 and 10 (1995) 101.10.1557/JMR.1993.0297Search in Google Scholar

[6] W.C. Oliver, G.M. Pharr: J. Mater. Res. 7 (1992) 1564.10.1557/JMR.1992.1564Search in Google Scholar

[7] B. Bhushan, A.V. Kulkarni,W. Bonin, J.T.Wyrobek: Philos. Mag. A 74 (1996) 1117.10.1080/01418619608239712Search in Google Scholar

[8] M. Kobayashi, H. Iwata, T. Horiguchi, S. Endo: phys. stat. sol. (b) 198 (1996) 521.10.1002/pssb.2221980169Search in Google Scholar

[9] CrysTec GmbH Kristalltechnologie, Köpenicker Straße 325, 12555 Berlin, Germany.Search in Google Scholar

[10] M. Günther, G. Suchaneck, G. Gerlach, B. Wolf: Fine Mechanics and Optics 46 (2001) 365.Search in Google Scholar

[11] K.L. Johnson: Contact mechanics, Cambridge University Press, Cambridge (1985).10.1017/CBO9781139171731Search in Google Scholar

[12] G.M. Pharr, W.C. Oliver, D.S. Harding: J. Mater. Res. 7 (1991) 1129.10.1557/JMR.1991.1129Search in Google Scholar

[13] V. Domnich, Y. Gogotsi: Rev. Adv. Mater. Sci. 3 (2002) 1.10.1016/S1468-6996(01)00150-4Search in Google Scholar

[14] B. Wolf, P. Paufler, in: B. Bhushan (Ed.), Fundamentals of tribology and bridging the gap between macro- and micro/nanoscales, NATO-ASI Proceedings, Kluwer Academic Publishers, Dordrecht (2001) 549.10.1007/978-94-010-0736-8_41Search in Google Scholar

[15] H. Hertz: J. reine und angewandte Mathematik 92 (1882) 156.10.1515/crll.1882.92.156Search in Google Scholar

[16] D. Lorenz: Ph. D. Thesis, Martin-Luther-Universität Halle (2001).Search in Google Scholar

[17] J.N. Sneddon: Int. J. Eng. Sci. 3 (1965) 47.10.1016/0020-7225(65)90019-4Search in Google Scholar

[18] J.C. Hay, A. Bolshakov, G.M. Pharr: J. Mater. Res. 14 (1999) 2296.10.1557/JMR.1999.0306Search in Google Scholar

[19] A.B. Mann, J.B. Pethica: Philos. Mag. A 79 (1999) 577.10.1080/01418619908210318Search in Google Scholar

[20] T.A. Michalske, J.E. Houston: Acta mater. 46 (1998) 391.10.1016/S1359-6454(97)00270-XSearch in Google Scholar

Received: 2002-10-30
Published Online: 2022-01-25

© 2003 Carl Hanser Verlag, München

Downloaded on 26.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/ijmr-2003-0142/html
Scroll to top button