Abstract
Though in depth-sensing nanoindentation experiments the entire load – depth curve is recorded, traditional data analysis delivers two characteristic values only: hardness and indentation modulus, being only a small fraction of the information contained in the experimental data. Based on multicycling experiments, the contact depth is established as an analytical function of total depth, and this is used to assign each point of the loading – unloading cycle a corresponding contact pressure. This technique proves particularly useful to analyse load –depth curves exhibiting discontinuities. Furthermore, the potential of multicycling as a probe of unloading – reloading hysteresis is discussed.
References
[1] D. Tabor: The hardness of metals, Clarendon Press, Oxford (1951).Search in Google Scholar
[2] B.W. Mott: Micro-indentation hardness testing, Butterworths, London (1956).Search in Google Scholar
[3] J.L. Hay, G.M. Pharr, in: ASM Metals Handbook, ASM International, Materials Park, Ohio (2000) 232.Search in Google Scholar
[4] M.F. Doerner, W.D. Nix: J. Mater. Res. 1 (1986) 601.10.1557/JMR.1986.0601Search in Google Scholar
[5] J.S. Field, M.V. Swain: J. Mater. Res. 8 (1993) 297 and 10 (1995) 101.10.1557/JMR.1993.0297Search in Google Scholar
[6] W.C. Oliver, G.M. Pharr: J. Mater. Res. 7 (1992) 1564.10.1557/JMR.1992.1564Search in Google Scholar
[7] B. Bhushan, A.V. Kulkarni,W. Bonin, J.T.Wyrobek: Philos. Mag. A 74 (1996) 1117.10.1080/01418619608239712Search in Google Scholar
[8] M. Kobayashi, H. Iwata, T. Horiguchi, S. Endo: phys. stat. sol. (b) 198 (1996) 521.10.1002/pssb.2221980169Search in Google Scholar
[9] CrysTec GmbH Kristalltechnologie, Köpenicker Straße 325, 12555 Berlin, Germany.Search in Google Scholar
[10] M. Günther, G. Suchaneck, G. Gerlach, B. Wolf: Fine Mechanics and Optics 46 (2001) 365.Search in Google Scholar
[11] K.L. Johnson: Contact mechanics, Cambridge University Press, Cambridge (1985).10.1017/CBO9781139171731Search in Google Scholar
[12] G.M. Pharr, W.C. Oliver, D.S. Harding: J. Mater. Res. 7 (1991) 1129.10.1557/JMR.1991.1129Search in Google Scholar
[13] V. Domnich, Y. Gogotsi: Rev. Adv. Mater. Sci. 3 (2002) 1.10.1016/S1468-6996(01)00150-4Search in Google Scholar
[14] B. Wolf, P. Paufler, in: B. Bhushan (Ed.), Fundamentals of tribology and bridging the gap between macro- and micro/nanoscales, NATO-ASI Proceedings, Kluwer Academic Publishers, Dordrecht (2001) 549.10.1007/978-94-010-0736-8_41Search in Google Scholar
[15] H. Hertz: J. reine und angewandte Mathematik 92 (1882) 156.10.1515/crll.1882.92.156Search in Google Scholar
[16] D. Lorenz: Ph. D. Thesis, Martin-Luther-Universität Halle (2001).Search in Google Scholar
[17] J.N. Sneddon: Int. J. Eng. Sci. 3 (1965) 47.10.1016/0020-7225(65)90019-4Search in Google Scholar
[18] J.C. Hay, A. Bolshakov, G.M. Pharr: J. Mater. Res. 14 (1999) 2296.10.1557/JMR.1999.0306Search in Google Scholar
[19] A.B. Mann, J.B. Pethica: Philos. Mag. A 79 (1999) 577.10.1080/01418619908210318Search in Google Scholar
[20] T.A. Michalske, J.E. Houston: Acta mater. 46 (1998) 391.10.1016/S1359-6454(97)00270-XSearch in Google Scholar
© 2003 Carl Hanser Verlag, München
Articles in the same Issue
- Frontmatter
- Editorial
- Editorial
- Articles/Aufsätze
- On the origins and mechanisms of the indentation size effect
- Nanoindentation testing of gear steels
- Nanoscale materials testing under industrially relevant conditions: high-temperature nanoindentation testing
- Investigation of the properties of candidate reference materials suited for the calibration of nanoindentation instruments
- Approaches of quantifying the entire load–depth curve in terms of hardness
- Effect of interphase boundaries on nanoindentation experiments on a Ni-base alloy
- Nanoindentation measurements on infiltrated alumina–aluminide alloys
- The phase diagram of the Cd–In–Sn system
- Experimental study of the liquid/liquid interfacial tension in immiscible Al–Bi system
- Solid state synthesis of Al-based amorphous and nanocrystalline Al–Nb–Si and Al–Zr–Si alloys
- X-ray diffraction study on the microstructure of an Al–Mg–Sc–Zr alloy deformed by high-pressure torsion
- A laser-remelted complex manganese bronze with shape memory
- Notifications/Mitteilungen
- Personal/Personelles
- Books/Bücher
- Conferences/Konferenzen
Articles in the same Issue
- Frontmatter
- Editorial
- Editorial
- Articles/Aufsätze
- On the origins and mechanisms of the indentation size effect
- Nanoindentation testing of gear steels
- Nanoscale materials testing under industrially relevant conditions: high-temperature nanoindentation testing
- Investigation of the properties of candidate reference materials suited for the calibration of nanoindentation instruments
- Approaches of quantifying the entire load–depth curve in terms of hardness
- Effect of interphase boundaries on nanoindentation experiments on a Ni-base alloy
- Nanoindentation measurements on infiltrated alumina–aluminide alloys
- The phase diagram of the Cd–In–Sn system
- Experimental study of the liquid/liquid interfacial tension in immiscible Al–Bi system
- Solid state synthesis of Al-based amorphous and nanocrystalline Al–Nb–Si and Al–Zr–Si alloys
- X-ray diffraction study on the microstructure of an Al–Mg–Sc–Zr alloy deformed by high-pressure torsion
- A laser-remelted complex manganese bronze with shape memory
- Notifications/Mitteilungen
- Personal/Personelles
- Books/Bücher
- Conferences/Konferenzen