Abstract
Though in depth-sensing nanoindentation experiments the entire load – depth curve is recorded, traditional data analysis delivers two characteristic values only: hardness and indentation modulus, being only a small fraction of the information contained in the experimental data. Based on multicycling experiments, the contact depth is established as an analytical function of total depth, and this is used to assign each point of the loading – unloading cycle a corresponding contact pressure. This technique proves particularly useful to analyse load –depth curves exhibiting discontinuities. Furthermore, the potential of multicycling as a probe of unloading – reloading hysteresis is discussed.
References
[1] D. Tabor: The hardness of metals, Clarendon Press, Oxford (1951).Suche in Google Scholar
[2] B.W. Mott: Micro-indentation hardness testing, Butterworths, London (1956).Suche in Google Scholar
[3] J.L. Hay, G.M. Pharr, in: ASM Metals Handbook, ASM International, Materials Park, Ohio (2000) 232.Suche in Google Scholar
[4] M.F. Doerner, W.D. Nix: J. Mater. Res. 1 (1986) 601.10.1557/JMR.1986.0601Suche in Google Scholar
[5] J.S. Field, M.V. Swain: J. Mater. Res. 8 (1993) 297 and 10 (1995) 101.10.1557/JMR.1993.0297Suche in Google Scholar
[6] W.C. Oliver, G.M. Pharr: J. Mater. Res. 7 (1992) 1564.10.1557/JMR.1992.1564Suche in Google Scholar
[7] B. Bhushan, A.V. Kulkarni,W. Bonin, J.T.Wyrobek: Philos. Mag. A 74 (1996) 1117.10.1080/01418619608239712Suche in Google Scholar
[8] M. Kobayashi, H. Iwata, T. Horiguchi, S. Endo: phys. stat. sol. (b) 198 (1996) 521.10.1002/pssb.2221980169Suche in Google Scholar
[9] CrysTec GmbH Kristalltechnologie, Köpenicker Straße 325, 12555 Berlin, Germany.Suche in Google Scholar
[10] M. Günther, G. Suchaneck, G. Gerlach, B. Wolf: Fine Mechanics and Optics 46 (2001) 365.Suche in Google Scholar
[11] K.L. Johnson: Contact mechanics, Cambridge University Press, Cambridge (1985).10.1017/CBO9781139171731Suche in Google Scholar
[12] G.M. Pharr, W.C. Oliver, D.S. Harding: J. Mater. Res. 7 (1991) 1129.10.1557/JMR.1991.1129Suche in Google Scholar
[13] V. Domnich, Y. Gogotsi: Rev. Adv. Mater. Sci. 3 (2002) 1.10.1016/S1468-6996(01)00150-4Suche in Google Scholar
[14] B. Wolf, P. Paufler, in: B. Bhushan (Ed.), Fundamentals of tribology and bridging the gap between macro- and micro/nanoscales, NATO-ASI Proceedings, Kluwer Academic Publishers, Dordrecht (2001) 549.10.1007/978-94-010-0736-8_41Suche in Google Scholar
[15] H. Hertz: J. reine und angewandte Mathematik 92 (1882) 156.10.1515/crll.1882.92.156Suche in Google Scholar
[16] D. Lorenz: Ph. D. Thesis, Martin-Luther-Universität Halle (2001).Suche in Google Scholar
[17] J.N. Sneddon: Int. J. Eng. Sci. 3 (1965) 47.10.1016/0020-7225(65)90019-4Suche in Google Scholar
[18] J.C. Hay, A. Bolshakov, G.M. Pharr: J. Mater. Res. 14 (1999) 2296.10.1557/JMR.1999.0306Suche in Google Scholar
[19] A.B. Mann, J.B. Pethica: Philos. Mag. A 79 (1999) 577.10.1080/01418619908210318Suche in Google Scholar
[20] T.A. Michalske, J.E. Houston: Acta mater. 46 (1998) 391.10.1016/S1359-6454(97)00270-XSuche in Google Scholar
© 2003 Carl Hanser Verlag, München
Artikel in diesem Heft
- Frontmatter
- Editorial
- Editorial
- Articles/Aufsätze
- On the origins and mechanisms of the indentation size effect
- Nanoindentation testing of gear steels
- Nanoscale materials testing under industrially relevant conditions: high-temperature nanoindentation testing
- Investigation of the properties of candidate reference materials suited for the calibration of nanoindentation instruments
- Approaches of quantifying the entire load–depth curve in terms of hardness
- Effect of interphase boundaries on nanoindentation experiments on a Ni-base alloy
- Nanoindentation measurements on infiltrated alumina–aluminide alloys
- The phase diagram of the Cd–In–Sn system
- Experimental study of the liquid/liquid interfacial tension in immiscible Al–Bi system
- Solid state synthesis of Al-based amorphous and nanocrystalline Al–Nb–Si and Al–Zr–Si alloys
- X-ray diffraction study on the microstructure of an Al–Mg–Sc–Zr alloy deformed by high-pressure torsion
- A laser-remelted complex manganese bronze with shape memory
- Notifications/Mitteilungen
- Personal/Personelles
- Books/Bücher
- Conferences/Konferenzen
Artikel in diesem Heft
- Frontmatter
- Editorial
- Editorial
- Articles/Aufsätze
- On the origins and mechanisms of the indentation size effect
- Nanoindentation testing of gear steels
- Nanoscale materials testing under industrially relevant conditions: high-temperature nanoindentation testing
- Investigation of the properties of candidate reference materials suited for the calibration of nanoindentation instruments
- Approaches of quantifying the entire load–depth curve in terms of hardness
- Effect of interphase boundaries on nanoindentation experiments on a Ni-base alloy
- Nanoindentation measurements on infiltrated alumina–aluminide alloys
- The phase diagram of the Cd–In–Sn system
- Experimental study of the liquid/liquid interfacial tension in immiscible Al–Bi system
- Solid state synthesis of Al-based amorphous and nanocrystalline Al–Nb–Si and Al–Zr–Si alloys
- X-ray diffraction study on the microstructure of an Al–Mg–Sc–Zr alloy deformed by high-pressure torsion
- A laser-remelted complex manganese bronze with shape memory
- Notifications/Mitteilungen
- Personal/Personelles
- Books/Bücher
- Conferences/Konferenzen