Abstract
The liquid/liquid interfacial tension in the demixing Al –Bi system has been measured between the monotectic temperature (Tm ≈ 657 °C) and 940 °C. The interfacial tension equals 56.7 ± 3.5 mJ/m2 at 660 °C and it decreases with increasing temperature. It is shown that the interfacial tension is proportional to (1 – T/Tc)δ, where T is the absolute temperature and Tc is the critical temperature. The critical-point exponent δ determined from the experimental data is ≈ 1.3.
-
Funding for this research was provided by the Deutsche Forschungsgemeinschaft under grant HO 1688/8-1 in the frame of Schwerpunktprogramm 1120 “Phasenumwandlungen in mehrkomponentigen Schmelzen”.
References
[1] H. Ahlborn, K. Löhberg, in: P.R. Sahm, R. Jansen, M.H. Keller (Eds.), Proc. Norderney Symposium on Scientific Results of the German Spacelab Mission D1: Norderney, Germany, August 27–29, 1986, DFVLR, Köln (1987) 297.Search in Google Scholar
[2] H. Ahlborn, K. Löhberg: Z. Metallkd. 78 (1987) 685.Search in Google Scholar
[3] D. Langbein: Metall 35 (1981) 1240.Search in Google Scholar
[4] K. Löhberg: Metall 41 (1987) 896.Search in Google Scholar
[5] R.J. Good, W.G. Givens, C.S. Tucek: Adv. Chem. Ser. 43 (1963) 211.10.1021/ba-1964-0043.ch014Search in Google Scholar
[6] S.I. Popel, V.N. Kozhurkov, A.A. Zhukov: Russ. Metall. 5 (1975) 56.Search in Google Scholar
[7] L. Martin –Garin, A. Dinet, J.M. Hicter: Revue de Métallurgie 78 (1981) 269.Search in Google Scholar
[8] D. Chatain, C. Vahlas, N. Eustathopoulos: Acta Metall. 32 (1984) 227.10.1016/0001-6160(84)90051-8Search in Google Scholar
[9] D. Chatain, L. Martin –Garin, N. Eustathopoulos: J. Chim. Phys. 79 (1982) 569.10.1051/jcp/1982790569Search in Google Scholar
[10] M. Merkwitz: Ph. D. Thesis, Technische Universität Chemnitz (1997); http://www.tu-chemnitz.de/physik/ARCHIV/PROMOT/Search in Google Scholar
[11] M. Merkwitz, J. Weise, K. Thriemer, W. Hoyer: Z. Metallkd. 89 (1998) 247.Search in Google Scholar
[12] M. Merkwitz, W. Hoyer: Z. Metallkd. 90 (1999) 363.Search in Google Scholar
[13] H.-G. Krull: Ph. D. Thesis, Max-Plank-Institut für Metallforschung, Stuttgart (1990).Search in Google Scholar
[14] F.E. Wittig, G. Keil: Z. Metallkd. 54 (1963) 576.Search in Google Scholar
[15] B. Predel, H. Sandig: Mater. Sci. Eng. 4 (1969) 49.10.1016/0025-5416(69)90038-XSearch in Google Scholar
[16] T.B. Massalski, J.L. Murray, K.H. Bennet, H. Baker: Binary Alloy Phase Diagrams, Vol. 1, American Society for Metals, Metals Park, OH (1986).Search in Google Scholar
[17] G. Lang: Aluminium 49 (1973) 231.Search in Google Scholar
[18] L. Goumiri, J.C. Joud, P. Desre: Surface Sci. 83 (1979) 471.10.1016/0039-6028(79)90057-8Search in Google Scholar
[19] R. Becker: Ann. Phys. 5 (32) (1938) 128.10.1002/andp.19384240115Search in Google Scholar
[20] S. Diefenbach: Ph. D. Thesis, Ruhr-Universität Bochum (1993).Search in Google Scholar
[21] D. Chatain, N. Eustathopoulos: J. Chim. Phys. 81 (1984) 587.10.1051/jcp/1984810587Search in Google Scholar
[22] D. Chatain, N. Eustathopoulos: J. Chim. Phys. 81 (1984) 599.10.1051/jcp/1984810599Search in Google Scholar
[23] B. Derby, J.J. Favier: Acta Metall. 31 (1983) 1123.10.1016/0001-6160(83)90208-0Search in Google Scholar
[24] J.D. van der Waals: Z. phys. Chem. 13 (1894) 657.10.1515/zpch-1894-1338Search in Google Scholar
[25] J.W. Cahn, J.E. Hilliard: J. Chem. Phys. 28 (1958) 258.10.1063/1.1744102Search in Google Scholar
[26] S.S. Rowlinson, B. Widom: Molecular Theory of Capillarity, Clarendon Press, Oxford (1982).Search in Google Scholar
© 2003 Carl Hanser Verlag, München
Articles in the same Issue
- Frontmatter
- Editorial
- Editorial
- Articles/Aufsätze
- On the origins and mechanisms of the indentation size effect
- Nanoindentation testing of gear steels
- Nanoscale materials testing under industrially relevant conditions: high-temperature nanoindentation testing
- Investigation of the properties of candidate reference materials suited for the calibration of nanoindentation instruments
- Approaches of quantifying the entire load–depth curve in terms of hardness
- Effect of interphase boundaries on nanoindentation experiments on a Ni-base alloy
- Nanoindentation measurements on infiltrated alumina–aluminide alloys
- The phase diagram of the Cd–In–Sn system
- Experimental study of the liquid/liquid interfacial tension in immiscible Al–Bi system
- Solid state synthesis of Al-based amorphous and nanocrystalline Al–Nb–Si and Al–Zr–Si alloys
- X-ray diffraction study on the microstructure of an Al–Mg–Sc–Zr alloy deformed by high-pressure torsion
- A laser-remelted complex manganese bronze with shape memory
- Notifications/Mitteilungen
- Personal/Personelles
- Books/Bücher
- Conferences/Konferenzen
Articles in the same Issue
- Frontmatter
- Editorial
- Editorial
- Articles/Aufsätze
- On the origins and mechanisms of the indentation size effect
- Nanoindentation testing of gear steels
- Nanoscale materials testing under industrially relevant conditions: high-temperature nanoindentation testing
- Investigation of the properties of candidate reference materials suited for the calibration of nanoindentation instruments
- Approaches of quantifying the entire load–depth curve in terms of hardness
- Effect of interphase boundaries on nanoindentation experiments on a Ni-base alloy
- Nanoindentation measurements on infiltrated alumina–aluminide alloys
- The phase diagram of the Cd–In–Sn system
- Experimental study of the liquid/liquid interfacial tension in immiscible Al–Bi system
- Solid state synthesis of Al-based amorphous and nanocrystalline Al–Nb–Si and Al–Zr–Si alloys
- X-ray diffraction study on the microstructure of an Al–Mg–Sc–Zr alloy deformed by high-pressure torsion
- A laser-remelted complex manganese bronze with shape memory
- Notifications/Mitteilungen
- Personal/Personelles
- Books/Bücher
- Conferences/Konferenzen