Home Characterization of intermetallic compounds formed during the interfacial reactions of liquid Sn and Sn– 58Bi solders with Ni substrates
Article
Licensed
Unlicensed Requires Authentication

Characterization of intermetallic compounds formed during the interfacial reactions of liquid Sn and Sn– 58Bi solders with Ni substrates

  • M. Y. Chiu , S. Y. Chang , Y. H. Tseng , Y. C. Chan and T. H. Chuang EMAIL logo
Published/Copyright: December 27, 2021
Become an author with De Gruyter Brill

Abstract

The intermetallic compound that appears during the soldering reaction between pure Sn and Ni substrate at temperatures ranging from 250 to 400 °C is analyzed to be Ni43Sn57 A similar reaction at the Sn– 58Bi/Ni interface results in the formation of the Ni41.5Sn57.9Bi0.6 phase. At the Sn/Ni and Sn–58Bi/Ni interfaces, each kind of intermetallic compound formation exhibits a similar scallop-type morphology. However, the growth rate of intermetallic compounds at the Sn/Ni interface is greater than that at the Sn– 58Bi/Ni interface. The growth kinetics for both cases is diffusion controlled. The activation energy for the intermetallic growth at the Sn/Ni interface is 43.7 kJ/mol, which is higher than that at the Sn–58Bi/Ni interface (28.3 kJ/mol).


Prof. T. H. Chuang Department of Materials Science and Engineering National Taiwan University 1 Roosevelt Rd., Sec. 4, Taipei 106, Taiwan Tel.: +886 2 2392 9635 Fax: +886 2 2363 4562

References

1 Tomlinson, W.J.; Collier, I.: J. Mater. Sci. 22 (1987) 1835.10.1007/BF01132413Search in Google Scholar

2 Felton, L.E.; Raeder, C.H.; Knorr, D.B.: JOM July (1993) 28.10.1007/BF03222377Search in Google Scholar

3 Mei, Z.; Morris, J.W. Jr.: J. Electron. Mater. 21 (1992) 599.10.1007/BF02655427Search in Google Scholar

4 Raeder, C.H.; Felton, L.E.; Tanzi, V.A.; Knorr, D.B.: J. Electron. Mater. 23 (1994) 611.10.1007/BF02653346Search in Google Scholar

5 Thwaites, C.J.: Int. Met. Rev. 17 (1972) 149.10.1179/095066072790137567Search in Google Scholar

6 Chen, C.; Ho, C.E.; Lin, A.H.; Luo, G.L.; Kao, C.R.: J. Electron. Mater. 29 (2000) 1200.10.1007/s11664-000-0013-8Search in Google Scholar

7 Kang, S.K.; Rai, R.S.; Purushothaman, S.: J. Electron. Mater. 25 (1996) 1113.10.1007/BF02659912Search in Google Scholar

8 Young, B.L.; Duh, J.G.: J. Electron. Mater. 30 (2001) 878.10.1007/s11664-001-0075-2Search in Google Scholar

9 Kang, S.K.; Ramachandran, V.: Spripta Metall. 14 (1980) 421.10.1016/0036-9748(80)90338-5Search in Google Scholar

10 Pan, T.Y.; Blair, H.D.; Nicholson, J.M.; Oh, S.W.: Adv. in Electron. Packaging 19 (1997) 1347.Search in Google Scholar

11 Liu, Y.M.; Chuang, T.H.: J. Electron. Mater. 29 (2000) 405.10.1007/s11664-000-0152-ySearch in Google Scholar

12 Vladimirov, A.B.; Kaygordov, V.N.; Klotsman, S.M.; Trakhtenberg, T. Sh.: Fiz. Met. Metalloved. 48 (1979) 352.Search in Google Scholar

Received: 2001-11-27
Published Online: 2021-12-27

© 2002 Carl Hanser Verlag, München

Downloaded on 25.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/ijmr-2002-0046/html
Scroll to top button