Home Fcc-hcp transformation-related internal friction in Fe –Mn alloys
Article
Licensed
Unlicensed Requires Authentication

Fcc-hcp transformation-related internal friction in Fe –Mn alloys

  • A. K. De , N. Cabañas and B. C. De Cooman EMAIL logo
Published/Copyright: December 27, 2021
Become an author with De Gruyter Brill

Abstract

The εγ reversible transformation has been studied in Fe-14 wt.% Mn and Fe-21 wt.% Mn alloys which are known to exhibit a weak shape memory effect. The internal friction changes and the associated elastic modulus changes were measured using the high frequency (40 kHz) composite oscillator technique in the temperature range 20 – 350 °C in which the εγ transformation occurs. The strain-induced amplitude dependent internal friction was measured in order to evaluate changes in the dislocation structure that occur during the transformations and to identify the transformation mechanism involved. The study revealed that the propagation of the ε/γ interface boundary during the εγ transformation is a thermally activated relaxation process obeying the Debye relaxation equation. The internal friction data were used to determine the activation energy of the process responsible for the martensitic transformation. The damping peak is observed at temperatures where both phases coexist and is due to the motion of the ε/γ interface.

The ε/γ interface consists of Shockley partial dislocations moving in groups and causing a minimal macroscopic strain. The ε/γ interface-related dislocation motion is, therefore, the cause of the internal friction peak. The internal friction is associated with a step-like change in the elastic modulus which is due to the ε/γ interface related relaxation and the difference in the modulus of the ε and γ phases.


Prof. Dr. Ir. B. C. De Cooman Laboratory for Iron and Steelmaking, Ghent University Technologiepark 9, BE-9052 Ghent, Belgium Tel.: +32 9 264 5773 Fax: +32 9 264 5833

References

1 Enami, K.; Nagasawa, A.; Nenno, S.; Scripta Metall. 9 (1975) 941.10.1016/0036-9748(75)90549-9Search in Google Scholar

2 Tsuzaki, K.; Ikegami, M.; Tomota, Y.; Maki, T.: ISIJ Int. No. 8 (1990) 666.10.2355/isijinternational.30.666Search in Google Scholar

3 Cotes, S.; Sade, M.; Fernández Guillermet A.: Metall. Mater. Trans. A 26 (1995) 1957.10.1007/BF02670667Search in Google Scholar

4 Lee, Y.-K.; Choi, C.-S.: Metall. Mater. Trans. A 31 (2000) 2735.10.1007/BF02830332Search in Google Scholar

5 Sato, A.; Chishima, E.; Soma, K.; Mori, T.: Acta Metall., 28 (1982) 1177.10.1016/0001-6160(82)90011-6Search in Google Scholar

6 Putaux, J.-L.; Chevalier, J.-P.: Acta Mater. 44 (1996) 1701.10.1016/1359-6454(95)00268-5Search in Google Scholar

7 Maki, T., in: K. Otsuka, C.M. Wayman (eds.), Shape Memory Materials, Cambridge University Press (1988) 117.Search in Google Scholar

8 Pace, N.G.; Saunders G.A.: Phil. Mag., 73 (1970) 73.10.1080/14786437008228152Search in Google Scholar

9 Jordan, L.; Masse, M.; Collier, J.-Y.; Bouquet, G.: J. Alloys Comp., 211/212 (1994) 204.10.1016/0925-8388(94)90483-9Search in Google Scholar

10 Bidaux, J.-E.; Schaller, R.; Benoit, W.: J. Physique, Coll. C8, No. 12, 48 (1987) 477.Search in Google Scholar

11 Yoshida, I.; Otsuka, H.: J. Alloys Comp. 211/212 (1994) 208.10.1016/0925-8388(94)90484-7Search in Google Scholar

12 Pérez-Sáez, R.B.; Nó, M.L.; San Juan, J.: J. Alloys Comp. 211/212 (1994) 212.10.1016/0925-8388(94)90485-5Search in Google Scholar

13 Lee, Y.-K.: Metall. Mater. Trans. A 32 (2001) 229.10.1007/s11661-001-0253-0Search in Google Scholar

14 Pan, Z.; Hosbons, R.R.: Proc. 39 Mechanical Working and Steel Processing Conference, Iron and Steel Society, Indianapolis, Indiana, XXXV (1997) 241.Search in Google Scholar

15 Lenkkeri, J.T.; Levoska, J.: Phil. Mag. A 48 (1983) 749.10.1080/01418618308236541Search in Google Scholar

16 Cabañas, N.; De, A.K.; Akdut, N.; De Cooman, B.C.: Proc. 43 Mechanical Working and Steel Processing Conference, Iron and Steel Society, Charlotte, North Carolina, October 28–31, 2001, XXXIX (2001) 813.Search in Google Scholar

17 Spinner, S.; Rozner, A.G.: J. Acoust. Soc. Amer. 40 (1966) 1009.10.1121/1.1910180Search in Google Scholar

18 De Morton, M.E.: J. Appl. Phys., 40 (1969) 208.10.1063/1.1657032Search in Google Scholar

19 Granato, A.; Lücke, K.: J. Appl. Phys. 27 (1956) 583.10.1063/1.1722436Search in Google Scholar

20 De, A.K.; De Blauwe, K.; Vandeputte, S.; De Cooman, B.C.: J. Alloys Comp. 310 (2000) 405.10.1016/S0925-8388(00)00973-7Search in Google Scholar

21 Nowick, S.; Berry, B.S.: Anelastic Relaxation in Crystalline Solids, Academic Press, New York (1972) 427.Search in Google Scholar

22 Dieter, G.E.: Mechanical Metallurgy McGraw-Hill London (1988) 135.Search in Google Scholar

23 Ilczuk, J.; Delaey, L.; Van Humbeeck, J.: J. Physique, Coll. C8, No. 12, 48 (1987) 553.Search in Google Scholar

24 Hwang, C.; Lei, C.Y.; Suzuki, T.; Wuttig, M.: J. De Physique, Coll. C8, No. 12, 48 (1987) 547.Search in Google Scholar

25 Lord, E.; Beshers, D.N.: Acta Metall., 14 (1966) 1659.10.1016/0001-6160(66)90018-6Search in Google Scholar

Received: 2001-11-19
Published Online: 2021-12-27

© 2002 Carl Hanser Verlag, München

Downloaded on 26.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/ijmr-2002-0043/html
Scroll to top button