Home Experimental and thermodynamic assessment of the Fe –Gd–Zr system
Article
Licensed
Unlicensed Requires Authentication

Experimental and thermodynamic assessment of the Fe –Gd–Zr system

  • Matvei Zinkevich EMAIL logo , Norbert Mattern and Ingrid Bächer
Published/Copyright: December 27, 2021
Become an author with De Gruyter Brill

Abstract

The phase equilibria in the ternary system Fe –Gd – Zr at 1073 K have been investigated by X-ray diffraction and electron probe microanalysis. The isothermal section consists of terminal solution phases bcc (Fe), hcp (Zr), and hcp (Gd) (bcc = body-centred cubic, hcp = hexagonal close-packed), binary compounds FeZr2 and FeZr3, quasibinary compounds (Fe, Zr)17Gd2, Fe17(Gd, Zr)2, Fe23(Gd, Zr)6, Fe3(Gd, Zr), and Laves phase Fe2(Gd, Zr). No ternary compounds were detected. The isomorphous phases Fe23Gd6–Fe23Zr6 and Fe2Gd–Fe2Zr do not form continuous solid solutions. The Fe3(Gd, Zr) phase shows the largest homogeneity region (0–12 at.% Zr). In the compound Fe17Gd2, Zr atoms can substitute for both Gd and Fe atoms. This results in the formation of two distinct phases (hexagonal and rhombohedral), respectively. The experimental results have been used to obtain a self-consistent thermodynamic description of the ternary system Fe – Gd–Zr.

Abstract

Die Phasengleichgewichte im ternären System Fe –Gd – Zr bei 1073 K wurden mit Röntgenbeugung und Elektronenstrahlmikroanalyse untersucht. Der isotherme Schnitt besteht aus den Mischkristallen bcc (Fe), hcp (Zr), und hcp (Gd), den binären Verbindungen FeZr2 und FeZr3, den quasibinären Verbindungen (Fe, Zr)17Gd2, Fe17(Gd, Zr)2, Fe23(Gd, Zr)6, Fe3(Gd, Zr), und der Laves-Phase Fe2(Gd, Zr). Keine ternären Verbindungen wurden entdeckt. Die isomorphen Phasen Fe23Gd6–Fe23Zr6 und Fe2Gd–Fe2Zr bilden nicht kontinuierliche feste Lösungen. Die Fe3(Gd,Zr)-Phase zeigt den größten Homogenitätsbereich (0– 12 at.% Zr). In der Verbindung Fe17Gd2, können die Zr-Atome sowohl Gd- als auch Fe-Atome ersetzen. Dieses führt zur Bildung von zwei unterschiedlichen Phasen mit hexagonaler und rhomboedrischer Struktur. Die experimentellen Ergebnisse wurden benutzt, um eine selbstkonsistente thermodynamische Beschreibung des ternären Systems Fe –Gd–Zr zu erhalten.


Dr. Matvei Zinkevich Max-Planck-Institut für Metallforschung/PML Heisenbergstr. 3, D-70569 Stuttgart, Germany Tel.: + 49 711 689 3102 Fax: + 49 711 689 3131

  1. The authors wish to express their thanks to W. Gude, B. Opitz, A. Weckbrodt, B. Gebel, and H. Klose for technical assistance. Financial support of the Deutsche Forschungsgemeinschaft DFG (project Ma1531/5) is gratefully acknowledged.

References

1 Shidlovsky, I.; Wallace, W.E.: J. Solid State Chem. 2 (1970) 193.10.1016/0022-4596(70)90069-1Search in Google Scholar

2 Raghavan, V.: Phase Diagrams of Ternary Iron Alloys, Indian Institute of Metals, Calcutta (1992) 876.Search in Google Scholar

3 Saunders, N.; Miodownik, A.P.: CALPHAD Calculation of Phase Diagrams, Pergamon Materials Series (1998).Search in Google Scholar

4 Zinkevich, M.; Mattern, N.; Seifert, H.J.: J. Phase Equilibria 21 (2000) 385.10.1361/105497100770339923Search in Google Scholar

5 Jiang, M.; Oikawa, K.; Ikeshoji, T.; Wulff, L.; Ishida, K.: J. Phase Equilibria 22 (2001) 406.10.1361/105497101770332965Search in Google Scholar

6 Zinkevich, M.; Mattern, N.; Seifert, H.J.: J. Phase Equilibria 22 (2001) 43.10.1361/105497101770339283Search in Google Scholar

7 PANDAT – a multicomponent phase diagram calculation software, Computherm LLC, 437 S. Yellowstone Drive, Suite 217, Madison, WI 53719, USA.Search in Google Scholar

8 ICDD Powder Diffraction File, International Center for Diffraction Data, 12 Campus Boulevard, Newtown Square, PA 19073–3273, USA.Search in Google Scholar

9 Bueno, D.; Sánchez, J.L.; Pénton, A.; Salim de Amorim, H.; Amaral, M.R., Jr.; Domingues, P.H.: Solid State Commun. 110 (1999) 221.10.1016/S0038-1098(99)00044-7Search in Google Scholar

10 Dwight, A.E.: Acta Crystallogr., Sect. B 24 (1968) 1395.10.1107/S056774086800436XSearch in Google Scholar

11 Nagai, H.: J. Phys. Soc. Jpn. 55 (1986) 177.10.1143/JPSJ.55.177Search in Google Scholar

12 Villars, P.; Calvert, L.D. (eds.): Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, ASM International, Materials Park, OH (1991).Search in Google Scholar

13 Yanson, T.; Manyako, M.; Bodak, O.; Cerny, R.; Yvon, K.: J. Alloys Compd. 320 (2001) 108.10.1016/S0925-8388(01)00930-6Search in Google Scholar

14 Lefevre, A.; Cataldo, L.; Cohen-Adad, M.Th.; Allibert, C.H.; Valignat, N.: J. Alloys Compd. 241 (1996) 210.10.1016/0925-8388(96)02309-2Search in Google Scholar

15 Lefevre, A.; Cohen-Adad, M.Th.; Mentzen, B.F.: J. Alloys Compd. 256 (1997) 207.10.1016/S0925-8388(96)03023-XSearch in Google Scholar

16 Zhou, R.J.; Rosenberg, M.; Schultz, L.; Schnitzke, K.: J. Magn. Magn. Mater. 109 (1992) 209.10.1016/0304-8853(92)91751-ESearch in Google Scholar

17 Derkaoui, S.; Valignat, N.; Allibert, C.H.: J. Alloys Compd. 232 (1996) 296.10.1016/0925-8388(95)02003-9Search in Google Scholar

18 Girt, E.; Altounian, Z.; Mao, M.; Swainson, I.P.; Donaberger, R.L.: J. Magn. Magn. Mater. 163 (1996) L251.Search in Google Scholar

19 Atiq, S.; Rawlings, R.D.; West, D.R.F.: Mater. Sci. Technol. 13 (1997) 375.10.1179/026708397790302241Search in Google Scholar

20 Voronin, V.I.; Berger, I.F.; Kuchin, A.G.; Sheptyakov, D.V.; Balagurov, A.M.: J. Alloys Compd. 315 (2001) 82.10.1016/S0925-8388(00)01294-9Search in Google Scholar

21 Liu, Y.; Allen, S.; Livingson, J.: Scripta Metall. Mater. 32 (1995) 1129.10.1016/0956-716X(95)00113-ASearch in Google Scholar

22 Granovsky M.S.; Arias, D.: J. Nucl. Mater. 229 (1996) 29.10.1016/0022-3115(95)00207-3Search in Google Scholar

23 Dinsdale, A.T.: CALPHAD 15 (1991) 317.10.1016/0364-5916(91)90030-NSearch in Google Scholar

24 Shen, H.; Zhang, W.; Liu, G.; Wang, R.; Du, Z.: Xiyou Jinshu/Rare Metals 15 (1996) 23.Search in Google Scholar

25 Norgren, S.: J. Phase Equilibria 21 (2000) 148.10.1361/105497100770340200Search in Google Scholar

26 Hillert, M.: J. Alloys Compd. 320 (2001) 161.10.1016/S0925-8388(00)01481-XSearch in Google Scholar

27 Ansara, I.; Sundman, B.: CALPHAD 24 (2000) 181.10.1016/S0364-5916(00)00022-5Search in Google Scholar

28 Inden, G., in: Report of the Project Meeting CALPHAD V, Düsseldorf (1976) p. III.4–1.Search in Google Scholar

29 Hillert, M.; Jarl, M.: CALPHAD 2 (1978) 227.10.1016/0364-5916(78)90011-1Search in Google Scholar

30 Jansson, B.: Trita-Mac-0234, Royal Institute of Technology, Stockholm (1984).Search in Google Scholar

31 Sundman, B., in: M. Doyama, T. Suzuki, J. Kihara, R. Yamamoto (eds.), Computer Aided Innovation of New Materials, Elsevier Science Publishers B.V., Amsterdam (1991).Search in Google Scholar

32 Lukas, H.L.; Fries, S.G.: J. Phase Equilibria 13 (1992) 532.10.1007/BF02665766Search in Google Scholar

33 Gröbner, J.; Schmid-Fetzer, R.; Pisch, A.; Cacciamani, G.; Riani, P.; Parodi, N.; Borzone, G.; Saccone, A.; Ferro, R.: Z. Metallkd. 90 (1999) 872.Search in Google Scholar

34 Meijering, J.L.: Philips’ Technische Rundschau 26 (1965) 224.Search in Google Scholar

Received: 2001-10-09
Published Online: 2021-12-27

© 2002 Carl Hanser Verlag, München

Downloaded on 26.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/ijmr-2002-0036/html
Scroll to top button