Home Strain rate dependence of the deformation mechanisms in a fully lamellar γ-TiAl-based alloy
Article
Licensed
Unlicensed Requires Authentication

Strain rate dependence of the deformation mechanisms in a fully lamellar γ-TiAl-based alloy

  • Arno Bartels , Helmut Clemens EMAIL logo , Gerhard Dehm , Erhardt Lach and Wolfram Schillinger
Published/Copyright: December 27, 2021
Become an author with De Gruyter Brill

Abstract

The intention of this study was to investigate the mechanical properties of an engineering γ-TiAl-based alloy with fully lamellar microstructure under quasistatic and dynamic compression at room temperature and strain rates ranging from 5.0 × 10–3 s–1 to 4.0 × 103 s–1 The microstructure of undeformed and deformed specimens was investigated by means of optical and electron microscopy. The results of the compression tests exhibit a slight strain rate sensitivity of the postyield stress. The fracture behavior of the studied γ-TiAl alloy strongly depends on the applied strain rates. Transmission electron microscopy observations conducted on deformed specimens revealed the existence of a high number of tangled ordinary dislocations, curved superdislocations and mechanical twins. The analysis of the deformation texture confirms the high activity of superdislocations and mechanical twinning during dynamic compression testing.


Prof. Dr. Helmut Clemens Institut für Werkstoffforschung GKSS Forschungszentrum GmbH Max-Planck-Str., D-21502 Geesthacht, Germany Tel.: +49 4152 87 2502 Fax: +49 4152 87 2666

Dedicated to Professor Dr. mont. Karl Leopold Maurer on the occasion of his 75th birthday


  1. The authors A.B. and W.S. gratefully acknowledge the support of this work in the frame of the Collaborative Research Centre 371 “Micromechanics of Multiphase Materials” of the German Research Society (DFG).

References

1 Hemker, K.; Dimiduk, D.; Clemens, H.; Darolia, R.; Inui, H.; Larsen, J.; Sikka, V.; Thomas, M.; Whittenberger, D. (eds.): Structural Intermetallics 2001, TMS, Warrendale, PA (2001).Search in Google Scholar

2 Clemens, H.; Kestler, H.: Adv. Eng. Mater. 2 (2000) 551.10.1002/1527-2648(200009)2:9<551::AID-ADEM551>3.0.CO;2-USearch in Google Scholar

3 Appel, F; Wagner, R.: Mat. Sci. Eng. R 22 (1998) 187.10.1016/S0927-796X(97)00018-1Search in Google Scholar

4 Hemker, K.J; Lu, M.; Zupan, M., in: Nathal, M.V.; Darolia, R.; Liu, C.T.; Martin, P.L.; Miracle, D.B.;Wagner, R.; Yamaguchi, M. (eds.), Structural Intermetallics 1997, TMS, Warrendale, PA (1997) 147.Search in Google Scholar

5 Jin, Z.; Gray III, G.T.; Kim, Y.-W., Yamaguchi, M.: As Ref. [4], p. 225.Search in Google Scholar

6 Maloy, S.M.; Gray III, G.T., in: Kim, Y.-W.,Wagner, R., Yamaguchi, M. (eds), Gamma Titanium Aluminides, TMS, Warrendale, PA (1995) 307.Search in Google Scholar

7 Maloy, S.M.; Gray III, G.T.: Acta mater. 44 (1996) 1741.10.1016/1359-6454(95)00329-0Search in Google Scholar

8 Jin, Z.; Cady, C.; Gray III, G.T.; Kim, Y.-W.: Metall. Trans. A 31 (2000) 1007.10.1007/s11661-000-0042-1Search in Google Scholar

9 Gardinier, P.; Miguelez, H.; Cortez, R.; Lepetitcorps, Y.; Dodd, B.; Navarro, C.: J. Physique 7 (1997) 593.Search in Google Scholar

10 Zhou, Y.; Xia, Y.: J. Mat. Sci. 34 (2000) 925.10.1023/A:1004754525806Search in Google Scholar

11 Clemens, H.: Z. Metallkd. 86 (1995) 814.Search in Google Scholar

12 Clemens, H.; Jeglitsch, F.: Pract. Metallography 37 (2000) 194.10.1515/pm-2000-370404Search in Google Scholar

13 Chatterjee, A.; Bolay, U.; Sattler, U.; Clemens, H.: Intermetallics and Superalloys, Vol. 10, Wiley-VCH, Weinheim (2000) 233.Search in Google Scholar

14 Eberhardt, N.: Ph. D. Thesis, University of Leoben, Leoben (1999).Search in Google Scholar

15 Eberhardt, N.; Lorich, A.; Jörg, R.; Kestler, H.; Knabl, W.; Baur; H.; Joos, R.; Clemens, H.: Z. Metallkd. 89 (1998) 772.Search in Google Scholar

16 Hebesberger, T.; Semprimoschnig, C.O.A.; Pippan, R.; Kolednik, O.; Clemens, H., in: Kim, Y.-W.; Dimiduk, D.M.; Loretto, M.H. (eds.), Gamma Titanium Aluminides 1999, TMS, Warrendale, PA (1999) 573.Search in Google Scholar

17 Hopkinson, B.: Proc. R. Soc. A 74 (1905) 498.Search in Google Scholar

18 Lach, E.: ISL-Report, RT 509/89, Saint-Louis (1989).Search in Google Scholar

19 Lichtenberger, A.; Gazeaud, G.; Lach, E.: J. Physique 49 (1988) 589.Search in Google Scholar

20 Dahms, M. Bunge, H.J.: Textures Microstruct. 8–9 (1988) 97.10.1155/TSM.8-9.97Search in Google Scholar

21 Bartels, A.; Koeppe, C.; Zhang, T.; Mecking, H.: As Ref. [6], p. 655.Search in Google Scholar

22 Mecking, H.:Work Hardening in Tension and Fatigue, ASM, New York (1977) 67.Search in Google Scholar

23 Bartels, A.; Hartig, Ch.; Willems, S; Uhlenhut, H.: Mat. Sci. Eng. A 239–240 (1997) 14.10.1016/S0921-5093(97)00556-XSearch in Google Scholar

24 Mecking, H.; Hartig, Ch.; Kocks, U.F.: Acta mater. 44 (1996) 1309.10.1016/1359-6454(95)00308-8Search in Google Scholar

Received: 2001-12-17
Published Online: 2021-12-27

© 2002 Carl Hanser Verlag, München

Downloaded on 26.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/ijmr-2002-0035/html?lang=en
Scroll to top button