Startseite Investigation of the Cooling Jets Used in the Blown Film Process
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Investigation of the Cooling Jets Used in the Blown Film Process

  • N. Gao , S. Li und D. Ewing
Veröffentlicht/Copyright: 30. April 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Measurements were performed to characterize the development of the cooling jets produced by a typical dual-lip air ring used in the blown film manufacturing process. The distribution of the pressure on the bubble surface and the velocity field in the region above the forming cone were measured for a rigid model bubble with a blow-up ratio of 2.5. The measurements indicated that the development of the flow below the top of the forming cone in the air ring could be divided into two regions separated by local maxima in the static and fluctuating pressure. These maxima seemed to be associated with the location where the lower jet attached to the bubble surface. There was a region of negative gauge pressure on the bubble surface below the forming cone that should act to stabilize the bubble against the forming cone in practical applications. Above the forming cone, the lower jet was initially decelerated and then entrained into the upper jet. The upper jet then attached to the bubble surface and finally the flow recovered to a wall jet along the bubble surface. The profiles of the static and fluctuating pressure in the first and third regions above the forming cone collapsed reasonably well when they were scaled using the velocity of the lower jet and the velocity of the upper jet, respectively. The magnitude of the local maxima in the static and fluctuating pressure where the upper jet attached to the bubble depended on the upper jet velocity and the ratio of the upper and lower jet velocities.


Mail address: D. Ewing, Dept. of Mech. Eng., McMaster University, Hamilton, Ontario, Canada, L8S 4L7 E-mail:

References

1 Pearson, J., Petrie, C.: J. Fluid Mech.40, p. 1 (1970).10.1017/S0022112070000010Suche in Google Scholar

2 Pearson, J., Petrie, C.: J. Fluid Mech.42, p. 609 (1970).10.1017/S0022112070001507Suche in Google Scholar

3 Petrie, C.: AIChE J.21, p. 275 (1975).10.1002/aic.690210208Suche in Google Scholar

4 Yeow, Y.: J. Fluid Mech.75, p. 577 (1976).10.1017/S0022112076000396Suche in Google Scholar

5 Gupta, R. K., Wissbrun, A. M. K.: Polym. Eng. Sci.22, p. 172 (1982).10.1002/pen.760220307Suche in Google Scholar

6 Luo, X., Tanner, R.: Polym. Eng. Sci.25, p. 620 (1985).10.1002/pen.760251008Suche in Google Scholar

7 Kanai, T.: Int. Polym. Proc.1, p. 137 (1987).10.3139/217.870137Suche in Google Scholar

8 Yamane, H., White, J.: Int. Polym. Process2, p. 107 (1987).10.3139/217.870107Suche in Google Scholar

9 Liu, C., Bogue, D., Spruiell, J.: Int. Polym. Process10, p. 226 (1995).10.3139/217.950226Suche in Google Scholar

10 Cain, J., Denn, M.: Polym. Eng. Sci.28, p. 1527 (1988).10.1002/pen.760282303Suche in Google Scholar

11 Pirkle, J., Braatz, R.: Polym. Eng. Sci.43, p. 398 (2003).10.1002/pen.10033Suche in Google Scholar

12 Cao, B., Campbell, G.: Int. Polym. Process4, p. 114 (1989).10.3139/217.890114Suche in Google Scholar

13 Kanai, T., White, J.: Polym. Eng. Sci.24, p. 1185 (1984).10.1002/pen.760241508Suche in Google Scholar

14 Ghaneh-Fard, A., Carreau, P., Lafleur, P.: AIChE J.42, p. 1388 (1996).10.1002/aic.690420519Suche in Google Scholar

15 Ghaneh-Fard, A., Carreau, P., Lafleur, P.: Polym. Eng. Sci.37, p. 1148 (1997).10.1002/pen.11759Suche in Google Scholar

16 Cao, B.: PhD Thesis, Clarkson University, Potsdam, NY (1989).Suche in Google Scholar

17 Campbell, G., Cao, B.: TAPPI J.70, p. 41 (1987).Suche in Google Scholar

18 Wolf, D., Feron, B., Wortberg, J.: Int. Polym. Process.12, p. 38 (1997).10.3139/217.970038Suche in Google Scholar

19 Feron, B., Wolf, D., Wortberg, J.: Polym. Eng. Sci.37, p. 876 (1997).10.1002/pen.11730Suche in Google Scholar

20 Akaike, O., Tsuji, T., Nagano, Y.: Int. Polym. Process.4, p. 168 (1999).10.3139/217.1540Suche in Google Scholar

21 Cole, R.: Plast. Eng.38, p. 35 (1982).10.2307/3192580Suche in Google Scholar

22 Sidiropoulos, V., Wood, P., Vlachopoulos, J.: J. Reinf. Plast. Comp.18, p. 529 (1999).10.1177/073168449901800605Suche in Google Scholar

23 Sidiropoulos, V., Vlachopoulos, J.: Int. Polym. Process.15, p. 40 (2000).10.3139/217.1575Suche in Google Scholar

24 Sidiropoulos, V., Vlachopoulos, J.: Polym. Eng. Sci.40, p. 1661 (2000).10.1002/pen.11292Suche in Google Scholar

25 Sun, H.: PhD Thesis, McMaster University, Hamilton, Canada (2002).Suche in Google Scholar

26 Beuther, P.: PhD Thesis, The State University of New York at Buffalo, Buffalo, NY (1980).Suche in Google Scholar

27 Li, S.: MS Thesis, McMaster University, Hamilton, Canada (2003).Suche in Google Scholar

28 George, W., Beuther, P., Lumley, J.: Proc. Dynamit Flow Conf. Marseille, p. 757 (1978).10.1007/978-94-009-9565-9_43Suche in Google Scholar

29 Kiya, M., Sasaki., K.: J. of Fluid Mech.154, p. 463 (1985).10.1017/S0022112085001628Suche in Google Scholar

30 Heenan, A., Morrison, J.: AIAA J.36, p. 1014 (1998).10.2514/2.474Suche in Google Scholar

31 Li, S., Gao, N., Ewing, D.: ASME Paper IMECE2003-42747 (2003).Suche in Google Scholar

Received: 2004-10-14
Accepted: 2004-12-13
Published Online: 2013-04-30
Published in Print: 2005-03-01

© 2005, Carl Hanser Verlag, Munich

Heruntergeladen am 7.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/217.1866/pdf
Button zum nach oben scrollen