Startseite Viscoelastic Properties of Flexible Organic Fiber Composites
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Viscoelastic Properties of Flexible Organic Fiber Composites

  • B. Hausnerová , N. Zdražilová , T. Kitano und P. Sáha
Veröffentlicht/Copyright: 30. April 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, molten high density polyethylene (HDPE) was compounded with four kinds of high performance organic fibers: two types of aramid (KF29 and KF49), liquid crystalline polymer (LCP) and poly(vinyl alcohol) (VF), differing in their chemical structure and fiber lengths. From the SEM pictures, it is observed that shape and size of these organic fibers maintained almost the same even after cutting in pellets, following the mixing process. VF/HDPE and LCP/HDPE systems show generally lower rates of increase of both storage modulus and dynamic viscosity with fiber content than KF/HDPE composites. Comparison of these functions at the fixed fiber content has shown that the most effective parameter, affecting the viscoelastic behaviour of organic fiber filled systems, seems to be their rigidity/flexibility in the molten state. The influence of fiber rigidity/flexibility becomes gradually lower with the increase of both strain amplitude and angular frequency. The parameters of the equations describing relationship between relative values of viscoelastic functions and fiber content were found to be largely dependent on fiber content. Such finding remarkably differs from behaviour of short inorganic fiber filled systems, where these variables maintained constant values.


Mail address: B. Hausnerová, Tomas Bata University in Zlín, Faculty of Technology, Polymer Centre, TGM 275, 762 72 Zlín, Czech Republic E-mail:

References

1 Czarnecki, L., White, J. L.: J. Appl. Polym. Sci.25, p. 1217 (1980).10.1002/app.1980.070250623Suche in Google Scholar

2 White, J. L., Czarnecki, I., Tanaka, H.: Rubber Chem. Technol.53, p. 823 (1980).10.5254/1.3535062Suche in Google Scholar

3 Mutel, A. T., Kamal, M. R.: Polym. Compos.5, p. 29 (1984).10.1002/pc.750050107Suche in Google Scholar

4 Kitano, T., Funabashi, M., Klason, C., Kubat, J.: Int. Polym. Process.3, p. 67 (1988).10.3139/217.880067Suche in Google Scholar

5 Metzner, A. B.: J. Rheol.29, p. 739 (1985).10.1122/1.549808Suche in Google Scholar

6 Shenoy, A. V.: Rheology of Filled Polymer Systems. Kluwer Academic Publishers, Dordrecht (1999).10.1007/978-94-015-9213-0Suche in Google Scholar

7 Gupta, R. K.: Polymer and Composite Rheology. Marcel Dekker, New York (2000).10.1201/9781482273700Suche in Google Scholar

8 Ono, Y., Tanigaki, T., Yamaguchi, K., Tanino, K.: Kobunshi Ronbunshu46, p. 389 (1989).10.1295/koron.46.389Suche in Google Scholar

9 Franzen, B., Klason, C., Kubat, J., Kitano, T.: Composites20, p. 65 (1989).10.1016/0010-4361(89)90684-8Suche in Google Scholar

10 Kitano, T., Kataoka, T., Nagatsuka, Y.: Rheol. Acta23, p. 408 (1984).10.1007/BF01329193Suche in Google Scholar

11 Kutty, S. K. N., Nando, G. B.: J. Appl. Polym. Sci.43, p. 1913 (1991).10.1002/app.1991.070431016Suche in Google Scholar

12 Rajabian, M., Ait-Kadi, A.: SPE ANTEC Tech. Papers53, p. 1183 (1995).Suche in Google Scholar

13 Wortmann, F. J., Schulz, K. V.: Polymer36, p. 2363 (1995).10.1016/0032-3861(95)97334-CSuche in Google Scholar

14 Nishitani, Y., Sekigushi, I., Hausnerova, B., Kitano, T.: Polym. Polym. Compos.9, p. 199 (2001).10.1177/096739110100900306Suche in Google Scholar

15 Kitano, T., Haghni, E., Tanegashima, T., Saha, P.: Polym. Compos.21, p. 493 (2000).10.1002/pc.10204Suche in Google Scholar

16 Kitano, T., Hashmi, S. A. R., Chand, N.: Appl. Rheol.11, p. 258 (2001).10.1515/arh-2001-0014Suche in Google Scholar

17 Hashmi, S. A. R., Kitano, T., Vashishtha, S. R., Chand, N.: Indian J. Eng. Mater. Sci.9, p. 289 (2002).Suche in Google Scholar

18 Hashmi, S. A. R., Kitano, T., Chand, N.: Polym. Compos.24, p. 149 (2003).10.1002/pc.10015Suche in Google Scholar

19 Hashmi, S. A. R., Kitano, T., Chand, N.: Polym. Compos.23, p. 500 (2003).10.1002/pc.10451Suche in Google Scholar

20 Kitano, T., Kataoka, T., Nagatsuka, Y.: Rheol. Acta23, p. 20 (1984).10.1007/BF01333872Suche in Google Scholar

21 Maron, S. H., Pierce, P. E.: J. Colloid. Sci.11, p. 80 (1956).10.1016/0095-8522(56)90023-XSuche in Google Scholar

22 Poslinski, A. J., Ryan, M. F., Gupta, R. K., Seshadri, S. G., Frechette, F. J.: J. Rheol.32, p. 703 (1988).10.1122/1.549987Suche in Google Scholar

23 Poslinski, A. J., Ryan, M. F., Gupta, R. K., Seshadri, S. G., Frechette, F. J.: J. Rheol.32, p. 751 (1988).10.1122/1.549991Suche in Google Scholar

24 Kitano, T., Kataoka, T., Shirota, T.: Rheol. Acta20, p. 207 (1981).10.1007/BF01513064Suche in Google Scholar

Received: 2004-5-14
Accepted: 2004-11-18
Published Online: 2013-04-30
Published in Print: 2005-03-01

© 2005, Carl Hanser Verlag, Munich

Heruntergeladen am 7.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/217.1853/pdf
Button zum nach oben scrollen