Home Physical Sciences Numerical and Physical Modeling of Polymer Crystallization
Article
Licensed
Unlicensed Requires Authentication

Numerical and Physical Modeling of Polymer Crystallization

Part I: Theoretical and Numerical Analysis
  • J.-M. Haudin and J.-L. Chenot
Published/Copyright: May 2, 2013
Become an author with De Gruyter Brill

Abstract

In this first paper, we have revisited Avrami's model and cast its basic equations into a differential system. This system is integrated numerically, which avoids unnecessary simplifying assumptions generally used in order to get analytical expressions. This allows us to introduce the variations of nucleation and growth parameters as a function of processing ones (temperature, cooling rate, shear rate, etc.). Our analysis shows that it is necessary to take into account the variation of the initial number of potential nuclei with temperature, which was usually ignored. Finally, an outpout of our calculations is the size distribution of the morphological entities, i. e., a quantitative information on microstructure.


Mail address: J. M. Haudin, Centre de Mise en Forme des Matériaux, UMR C.N.R.S. n° 7635, Ecole des Mines de Paris, B.P. 207, 06904 Sophia-Antipolis Cedex, France E-mail:

References

1 Billon, N., Haudin, J. M., in: Structure Development During Polymer Processing. Cunha, A. M., Fakirov, S. (Eds.), NATO Science Series, Series: Applied Sciences, Vol. 370, Kluwer Academic Publishers, Dordrecht (2000).Search in Google Scholar

2 Avrami, M.: J. Chem. Phys.7, p. 1103 (1939).10.1063/1.1750380Search in Google Scholar

3 Avrami, M.: J. Chem. Phys.8, p. 212 (1940).10.1063/1.1750631Search in Google Scholar

4 Avrami, M.: J. Chem. Phys.9, p. 177 (1941).10.1063/1.1750872Search in Google Scholar

5 Kolmogoroff, A. N.: Izvest. Akad. Nauk., Ser. Math.1, p. 355 (1937).Search in Google Scholar

6 Evans, U. R.: Trans. Faraday Soc.41, p. 365 (1945).10.1039/tf9454100365Search in Google Scholar

7 Billon, N., Haudin, J. M.: Ann. Chim. Fr.15, p. 249 (1990).Search in Google Scholar

8 Nakamura, K., Watanabe, T., Katayama, K, Amano, T.: J. Appl. Polym. Sci.16, p. 1077 (1972).10.1002/app.1972.070160503Search in Google Scholar

9 Ozawa, T.: Polymer12, p. 150 (1971).10.1016/0032-3861(71)90041-3Search in Google Scholar

10 Billon, N., Barg, P., Haudin, J. M.: Intern. Polym. Process.6, p. 348 (1991).10.3139/217.910348Search in Google Scholar

11 Piorkowska, E., Galeski, A.: J. Polym. Sci. Polym. Phys. Ed.23, p. 1723 (1985).10.1002/pol.1985.180230901Search in Google Scholar

12 Schneider, W., Köppl, A., Berger, J.: Intern. Polym. Process.3, p. 151 (1988).10.3139/217.880150Search in Google Scholar

13 Zuidema, H., Peters, G. W. M., Meijer, H. E. H.: Macromol. Theory Simul.10, p. 447 (2001).10.1002/1521-3919(20010601)10:5<447::AID-MATS447>3.0.CO;2-CSearch in Google Scholar

14 Galeski, A.: J. Polym. Sci. Polym. Phys. Ed.19, p. 721 (1981).10.1002/pol.1981.180190501Search in Google Scholar

15 Galeski, A., Piorkowska, E.: J. Polym. Sci. Polym. Phys. Ed.19, p. 731 (1981).10.1002/pol.1981.180190502Search in Google Scholar

16 Billon, N., Haudin, J. M.: Ann. Chim. Fr.15, p. 1 (1990).Search in Google Scholar

17 Billon, N., Haudin, J. M.: Colloid Polym. Sci.271, p. 343 (1993).10.1007/BF00657416Search in Google Scholar

18 Haudin, J. M., Monasse, B., in: Structure Development During Polymer Processing. Cunha, A. M., Fakirov, S. (Eds.), NATO Science Series, Series: Applied Sciences, Vol. 370, Kluwer Academic Publishers, Dordrecht. (2000).Search in Google Scholar

19 Janeschitz-Kriegl, H.: Prog. Colloid Polym. Sci.87, p. 117 (1992).Search in Google Scholar

Received: 2004-5-10
Accepted: 2004-6-15
Published Online: 2013-05-02
Published in Print: 2004-09-01

© 2004, Carl Hanser Verlag, Munich

Downloaded on 11.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/217.1829/html
Scroll to top button