Home Numerical and Physical Modeling of Polymer Crystallization
Article
Licensed
Unlicensed Requires Authentication

Numerical and Physical Modeling of Polymer Crystallization

Part II: Isothermal and Non-isothermal Crystallization Kinetics of a Polypropylene in 2 Dimensions – Experiments and Simulation
  • B. Monasse , J. Smirnova , J.-M. Haudin and J.-L. Chenot
Published/Copyright: May 2, 2013
Become an author with De Gruyter Brill

Abstract

Crystallization of thin polypropylene films was performed in isothermal, constant cooling-rate and mixed conditions. The experiments were first analyzed using the classical procedures based on simplified forms (Avrami, Ozawa) of the general Kolmogoroff-Avrami-Evans (KAE) theory. These analyses, which can be applied over an unusually wide transformation range, show that the crystallizations are actually 2 D. Then, a procedure has been established for the determination of the nucleation and growth parameters involved in the theoretical model presented in the first paper of this series. These parameters have been introduced into the model in order to predict the crystallization behavior in isothermal, constant-cooling-rate and mixed-conditions: transformed fraction, number of activated nuclei, final size distribution of semi-crystalline entities. A very good agreement is generally found between predictions and experimental results.


Mail address: B. Monasse, Centre de Mise en Forme des Matériaux, UMR C.N.R.S. n° 7635, Ecole des Mines de Paris, B.P. 207, 06904 Sophia-Antipolis Cedex, France E-mail:

References

1 Kolmogoroff, A. N.: Izvest. Akad. Nauk., Ser. Math.1, p. 355 (1937).Search in Google Scholar

2 Avrami, M.: J. Chem. Phys.7, p. 1103 (1939); Ibid. 8, p. 212 (1940); Ibid. 9, p. 177 (1941).10.1063/1.1750380Search in Google Scholar

3 Evans, U. R.: Trans. Faraday Soc.41, p. 365 (1945).10.1039/tf9454100365Search in Google Scholar

4 Nakamura, K., Watanabe, T., Katayama, K., Amano, T.: J. Appl. Polym. Sci.16, p. 1077 (1972).10.1002/app.1972.070160503Search in Google Scholar

5 Tobin, M. C.: J. Polym. Sci. Polym. Phys. Ed.12, p. 399 (1974).10.1002/pol.1974.180120212Search in Google Scholar

6 Tobin, M. C: J. Polym. Sci. Polym. Phys. Ed.14, p. 2253 (1976).10.1002/pol.1976.180141210Search in Google Scholar

7 Yadav, Y. S., Jain, P. C., Nanda, V. S.: Thermochem. Act.80, p. 231 (1984).10.1016/0040-6031(84)87202-0Search in Google Scholar

8 Hay, J. N., Booth, A.: Brit. Polym. J.4, p. 19 (1972).10.1002/pi.4980040104Search in Google Scholar

9 Escleine, J. M., Monasse, B., Wey, E., Haudin, J. M.: Colloid Polym. Sci.262, p. 366 (1984).10.1007/BF01410254Search in Google Scholar

10 Billon, N., Haudin, J. M.: Colloid Polym. Sci.271, p. 343 (1993).10.1007/BF00657416Search in Google Scholar

11 Haudin, J. M., Chenot, J. L.: Intern. Polym. Process19, p. 267 (2004).10.3139/217.1829Search in Google Scholar

12 Ding, Z., Spruiell, J. E.: J. Polym. Sci. Polym. Phys. Ed.34, p. 2783 (1996).10.1002/(SICI)1099-0488(19961130)34:16<2783::AID-POLB12>3.0.CO;2-6Search in Google Scholar

13 Jay, F.: Thesis, Ecole des Mines de Paris, Sophia-Antipolis (1996).Search in Google Scholar

14 Monasse, B., Haudin, J. M.: Colloid Polym. Sci.263, p. 822 (1985).10.1007/BF01412960Search in Google Scholar

15 Hoffman, J. D.: Polymer24, p. 3 (1983).10.1016/0032-3861(83)90074-5Search in Google Scholar

16 Binsbergen, F. L.: Kolloid Z.Z. Polymere237, p. 289 (1970).10.1007/BF02086839Search in Google Scholar

17 Ozawa, T.: Polymer12, p. 150 (1971).10.1016/0032-3861(71)90041-3Search in Google Scholar

Received: 2004-5-10
Accepted: 2004-6-15
Published Online: 2013-05-02
Published in Print: 2004-09-01

© 2004, Carl Hanser Verlag, Munich

Downloaded on 8.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/217.1830/html
Scroll to top button