Evaluation of the Thermal Behaviour of Injection Moulds
-
I. Barros
, S. F. C. F. Teixeira , J. C. Teixeira and A. M. Cunha
Abstract
It is well known that the thermal behaviour of moulds used for thermoplastics processing has an important effect on both the part quality and the process productivity. The present work reports a study on the evaluation of the relative effect of different geometric and operational parameters on the thermal behaviour of injection moulds. It uses a mathematical model developed to simulate the thermal transient exchanged during the entire moulding cycle. The model is based on a 2D Fourier equation, uses an adaptive grid and describes the thermal contact resistance at mould/polymer interface. The cooling time and the interface temperature distribution are calculated from the computed temperature field in the domain under study. Experimental data, obtained with an instrumented tool during typical production conditions, is used to validate the developed model. The evaluation analysis is based on the Taguchi methodology used to rank the relative effect of the parameters on the selected variables (cooling time, temperature distribution and number of cycles to reach the thermal steady state).
© 2000, Carl Hanser Verlag, Munich
Articles in the same Issue
- Editorial
- Sixth of a Series: Pioneer of Man-Made Fibers and Solution Spinning Louis-Marie-Hilaire Bernigaud, Comte de Chardonnet
- Screw Extrusion
- A Network Analysis of a Screw Mixing Zone
- Experimental and Numerical Study of Rhomboidal Mixing Sections
- Reactive Extrusion
- Bulk Polymerization of ∊-Caprolactone in Twin Screw Extruder
- Die Extrusion
- Computer Aided Optimisation of Profile Extrusion Dies
- Fibers and Films
- An Investigation of Venturi and Coanda Effects in Blown Film Cooling
- Blends
- Solidification Behaviour of PA6/iPP Blends at High Cooling Rates
- Polymer Blends with Fibrillar Phase Morphology Prepared by Self-Reinforcing Technique
- Molding
- Compressive Squeeze Flow of Generalized Newtonian Fluids with Apparent Wall Slip
- Comparative Study of Ziegler-Natta and Metallocene Based Polypropylenes in Injection Molding
- The Pressure-Volume-Temperature Behavior Polyethylene Melts
- Evaluation of the Thermal Behaviour of Injection Moulds
- Polymer Solidification under Pressure and High Cooling Rates
Articles in the same Issue
- Editorial
- Sixth of a Series: Pioneer of Man-Made Fibers and Solution Spinning Louis-Marie-Hilaire Bernigaud, Comte de Chardonnet
- Screw Extrusion
- A Network Analysis of a Screw Mixing Zone
- Experimental and Numerical Study of Rhomboidal Mixing Sections
- Reactive Extrusion
- Bulk Polymerization of ∊-Caprolactone in Twin Screw Extruder
- Die Extrusion
- Computer Aided Optimisation of Profile Extrusion Dies
- Fibers and Films
- An Investigation of Venturi and Coanda Effects in Blown Film Cooling
- Blends
- Solidification Behaviour of PA6/iPP Blends at High Cooling Rates
- Polymer Blends with Fibrillar Phase Morphology Prepared by Self-Reinforcing Technique
- Molding
- Compressive Squeeze Flow of Generalized Newtonian Fluids with Apparent Wall Slip
- Comparative Study of Ziegler-Natta and Metallocene Based Polypropylenes in Injection Molding
- The Pressure-Volume-Temperature Behavior Polyethylene Melts
- Evaluation of the Thermal Behaviour of Injection Moulds
- Polymer Solidification under Pressure and High Cooling Rates